MPC1100A-54-0000

High-Efficiency, Non-Isolated, Fixed Ratio, 300W, Digital DC/DC Power Module

NOT RECOMMENDED FOR NEW DESIGNS, REFER TO MPC1100C-54-0002

DESCRIPTION

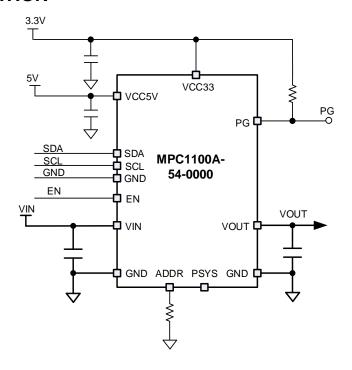
The MPC1100A-54-0000 is a high-efficiency, non-isolated LLC-DCX power card module with a fixed 10:1 transformer turns ratio. The device operates from a 40V to 60V DC primary bus and a 4V to 6V output voltage. It can deliver up to 300W of power.

The MPC1100A-54-0000 employs MPS's MP2981 (a digital LLC controller) and MP8500 (a smart synchronous rectifier). These devices can adjust the PWM to optimize the MPC1100A-54-0000, and ensure that the MPC1100A-54-0000 works at the resonant frequency.

The built-in multiple-time programmable (MTP) memory can store and restore device configurations. The fault status, input and output voltage, current, and temperature can be easily monitored via the PMBus/I²C interface.

The MPC1100A-54-0000 is available in a surface-mount (27mmx18mmx6mm) package.

FEATURES


- Up to 60A Continuous Secondary Current
- PMBus/I²C Compatible
- Built-In MTP to Store Custom Configurations
- Monitoring for Input Voltage, Output Voltage, Output Current, Output Power, and Temperature
- Protections Including V_{IN} UVLO, Output OVP/UVP, OCP_TDC, OCP_SPIKE, and OTP
- Available in a Surface-Mount (27mmx18mmx6mm) Package

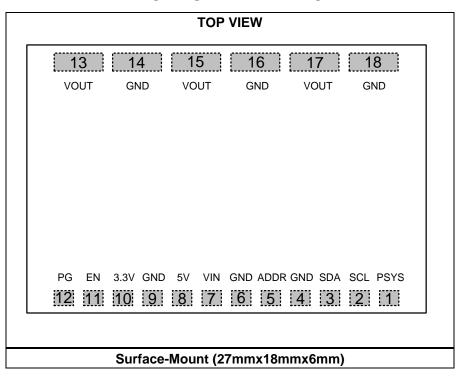
APPLICATIONS

- Datacenters
- DC Power Distribution
- High-End Computing Systems

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

ORDERING INFORMATION


Part Number* Package		Top Marking	MSL Rating
MPC1100A-54-0000	Surface-Mount	MPC1100A-54	3

^{*}For Tape & Reel, add suffix –Z (e.g. MPC1100A-54-0000–Z).

TOP MARKING

Date code Vendor's serial number LOT ID MPC1100A-54

PACKAGE REFERENCE

© 2022 MPS. All Rights Reserved.

PIN FUNCTIONS

Pin #	Name	I/O	Description
1	PSYS	A[O]	Output power indicator. Current-source output. Connect a resistor from PSYS to GND to convert this current to a voltage signal.
2	SCL	D[I/O]	PMBus/l ² C clock signal.
3	SDA	D[I]	PMBus/I ² C data signal.
5	ADDR	A[I]	PMBus/I ² C address 4-LSB pin setting.
7	VIN	Power	Input main power supply.
8	5V	Power	5V power supply input. 5V is the power supply for the primary-side driver. Connect a 1µF capacitor from 5V to ground.
10	3.3V	Power	3.3V power supply input . 3.3V is the power supply for the controller (MP2981) and synchronous rectifier (MP8500). Connect a 4.7µF capacitor from 3.3V to ground.
11	EN	D[I]	Enable control.
12	PG	D[O]	Power good output. The output of PG is an open-drain signal.
13, 15, 17	VOUT	Power	Secondary-side power output.
4, 6, 9, 14, 16, 18	GND	Power	Power ground.

ABSOLUTE MAXIMUM RATINGS (1)

Supply voltage (V _{IN})	0.3V to +80V
Aux voltage (V _{CC33})	0.3V to +4.0V
Aux voltage (V _{CC5V})	0.3V to +6.5V
Address pin (ADDR)	0.3V to +2.0V
Output voltage (V _{OUT})	0.3V to +7.0V
All other pins	$1.0.3V$ to $V_{CC33} + 0.3V$
Junction temperature	150°C
Lead temperature	260°C

Recommended Operating Conditions (2)

Supply voltage (V _{IN})	40V to 60V
Aux voltage (V _{CC33})	3.15V to 3.45V
Aux voltage (V _{CC5V})	4.5V to 5.5V
Operating junction temp	(T _J)40°C to +125°C

Notes:

- 1) Exceeding these ratings may damage the device.
- The device is not guaranteed to function outside of its operating conditions.

ELECTRICAL CHARACTERISTICS

 V_{CC33} = 3.3V, V_{CC5V} = 5V, V_{IN} = 54V, f_{SW} = 813kHz, current going into the pin is positive, typical values are at T_A = 25°C, unless otherwise noted.

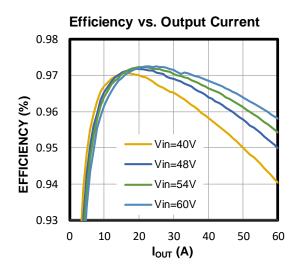
Parameter	Symbol	Condition	Min	Тур	Max	Units
Input	-					
Input voltage	VIN		40	54	59.5	V
Input current (V _{IN} quiescent current)	Ivin_q	Disabled, $V_{IN} = 54V$, EN low, $V_{CC33} = 3.3V$, $V_{CC5V} = 5V$			200	μΑ
Input current at no load	Ivin_no_load	Enabled, $V_{IN} = 54V$, EN high, $V_{CC33} = 3.3V$, $V_{CC5V} = 5V$		28		mA
Auxiliary 3.3V Supply						
Supply voltage	Vcc33		3.15	3.3	3.45	V
Supply current (V _{CC33} quiescent current)	Ivcc33_Q	Disabled, $V_{IN} = 54V$, EN low, $V_{CC33} = 3.3V$, $V_{CC5V} = 5V$		35		mA
Supply current at no load	I _{VCC33_NO_LOAD}	Enabled, V _{IN} = 54V, EN high, V _{CC33} = 3.3V, V _{CC5V} = 5V		142		mA
Auxiliary 5V Supply						
Supply voltage	V _{CC5V}		4.5	5	5.5	V
Supply current (V _{CC5V} quiescent current)	Ivcc5v_Q	Disabled, $V_{IN} = 54V$, EN low, $V_{CC33} = 3.3V$, $V_{CC5V} = 5V$			280	μA
Supply current at no-load	I _{VCC5V_NO_} LOAD	Enabled, V _{IN} = 54V, EN high, V _{CC33} = 3.3V, V _{CC5V} = 5V		26		mA
Output				I	I	
Transformer ratio	К	Primary side to secondary side, V _{IN} = 54V, I _{OUT} = 0A, K = V _{OUT} / V _{IN}		1/10		
Continuous output current (3)	lout_dc	V _{IN} = 54V, T _A = 25°C		47		Α
Output current pulse (3)	I _{OUT_DC_PULSE}	500μs pulse, 40V < V _{IN} < 59.5V	90			Α
Output resistance (3)	R _{LL}	V _{IN} = 54V, I _{OUT} = 15A		3		mΩ
Switching frequency	fsw	PMBus/I ² C reading ton, V _{IN} , I _{OUT} = 1A		813		kHz
Ambient efficiency	η	V _{IN} = 54V, I _{OUT} = 7.5A, T _A = 25°C		94		%
Protections						
Input voltage under-voltage lockout (UVLO)	V _{IN_UVLO}	Іоит = 0А	35.5	37	39.5	V
Input voltage over-voltage protection (OVP)	VIN_OVP	Latch mode, I _{OUT} = 0A	60	63	66	V
Output voltage UVP	V _{OUT_UVP}	Latch mode, Iout = 0A		3.0		V
Output voltage OVP	V _{OUT_OVP}	Latch mode, Iout = 0A		7.2		V
Output current over-current protection (OCP) (3)	Іоит_ос	Latch mode			140	Α
Over-temperature (OT) shutdown threshold (3)	Тотр			130		°C
OT recovery hysteresis (3)	T _{OTP_HYS}			30		°C
Protection recovery delay time (3)	tpro_delay				12.7	ms

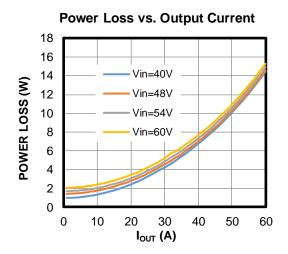
ELECTRICAL CHARACTERISTICS (continued)

 V_{CC33} = 3.3V, V_{CC5V} = 5V, V_{IN} = 54V, f_{SW} = 813kHz, current going into the pin is positive, typical values are at T_A = 25°C, unless otherwise noted.

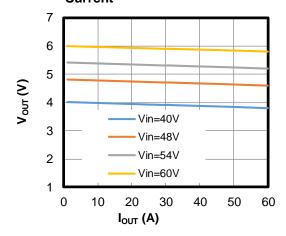
Parameter	Symbol	Condition	Min	Тур	Max	Units
EN						
Low-voltage input	V _{IL(EN)}				0.4	V
High-voltage input	V _{IH(EN)}		0.8			V
Enable high leakage	I _{IH(EN)}			3	8	μΑ
Enable delay (3)	t _A	EN high to soft start begins, Vout = 10%		0.8	1	ms
PSYS						
PSYS output voltage (3)	V _{PSYS}	$V_{IN} = 54V$, $I_{OUT} = 47A$, $R_{SYS} = 20k\Omega$		0.634		V
PG Output						
PG low voltage		I _{PG} = 20mA		0.1		V
PG high leakage current	IL_{PG}	$V_{PG} = 3.3V$	-3		+3	μA
PMBus/I ² C DC Characteristic	cs					
High-voltage input (3)	V_{IH}	SCL, SDA	1.35			V
Low-voltage input (3)	VIL	SCL, SDA			0.8	V
Input leakage current		SCL, SDA, ALT#	-10		+10	μA
Pin capacitance (3)	CPIN				10	pF
PMBus/I ² C Timing Character	ristics (3) (4)					
Operating frequency range	f _{PMB}		10		1000	kHz
Bus free time	t _{BUF}	Between stop and start condition	0.5			μs
Holding time	t _{HD_STA}		0.26			μs
Repeated start condition set- up time	t _{SU_STA}		0.26			μs
Stop condition set-up time	t su_sто		0.26			μs
Data hold time	thd_dat		10			ns
Data set-up time	t _{SU_DAT}		50			ns
Clock low timeout	tтімеоит		25		35	ms
Clock low period	t _{LOW}		0.5			μs
Clock high period	t HIGH		0.26		50	μs
Clock/data falling time	t _F				120	ns
Clock/data rising time	t_{R}				120	ns

Notes:


³⁾ Guaranteed by design or characterization data. Not tested in production.


⁴⁾ The device supports 100kHz, 400kHz, and 1MHz bus speeds. The PMBus/I²C timing parameters in this table are for operation at 400kHz and 1MHz. If the PMBus/I²C operating frequency is 100kHz, refer to SMBus specifications for the timing parameters

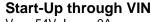
TYPICAL PERFORMANCE CHARACTERISTICS

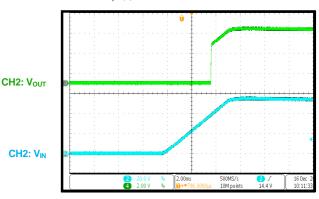

 $T_A = 25$ °C, unless otherwise noted.

6

CH2: Vout

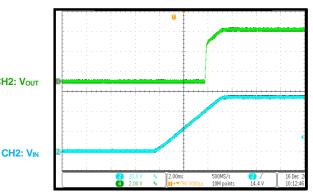
CH4: V_{OUT}


CH2: EN

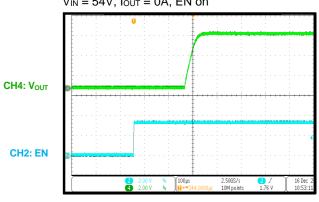

NOT RECOMMENDED FOR NEW DESIGNS, REFER TO MPC1100C-54-0002

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

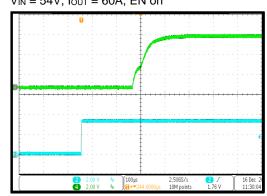
 $T_A = 25$ °C, unless otherwise noted.



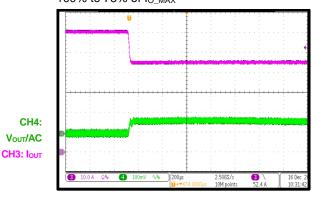
 $V_{IN} = 54V$, $I_{OUT} = 0A$


Start-Up through VIN

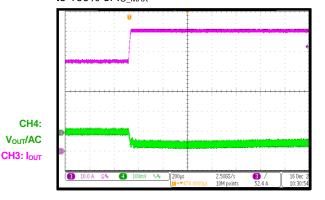
V_{IN} = 54V, I_{OUT} = 60A, full load


Remote On

 $V_{IN} = 54V$, $I_{OUT} = 0A$, EN on


Remote On

 $V_{IN} = 54V$, $I_{OUT} = 60A$, EN on


Transient Response

 $V_{IN} = 54V$, 1A/ μ s step change in load from 100% to 75% of $I_{O\ MAX}$

Transient Response

V_{IN} = 54V, 1A/µs step change in load from 75% to 100% of Io MAX

FUNCTIONAL BLOCK DIAGRAM

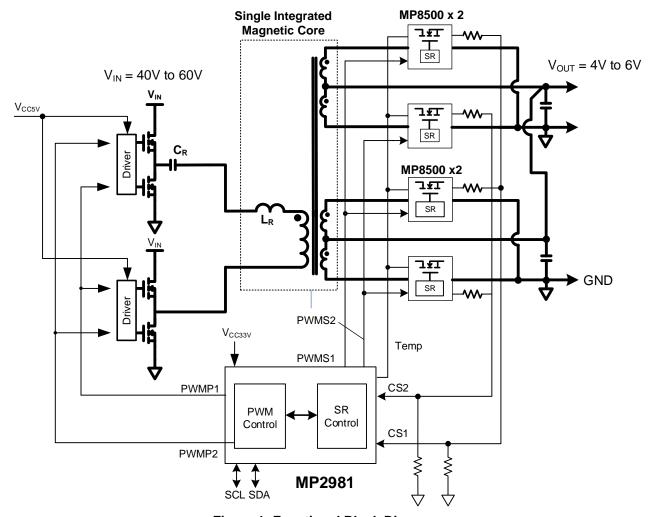


Figure 1: Functional Block Diagram

OPERATION

The MPC1100A-54-0000 is a full-bridge LLC-DCX power converter module with a 10:1 transformer turns ratio. The device incorporates the MP2981, a digital LLC controller that provides two PWM channels for primary-side control as well as two PWM channels for secondary-side control.

The LLC circuit is most efficient when working at the resonant frequency (see Figure 2). L_R and C_R have tolerances and temperature shifts that may cause the operating frequency to shift away from the resonant frequency.

The resonant frequency (fR) can be calculated with Equation (1):

$$f_{R} = \frac{1}{2\pi \times \sqrt{L_{R} \times C_{R}}}$$
 (1)

With MPS's MP8500 (a smart synchronous rectifier), the MPC1100A-54-0000 can be optimized to work at the resonant frequency, which improves the module's efficiency.

MPC1100A-54-0000 incorporates four MP8500 devices. The MP8500 supports accurate current-sense (CS) functionality. Its CS pin sources a current that is proportional to the output current (5µA/A), and generates a voltage by connecting a resistor to GND. The MP2981 can use this signal to monitor and report the output current (IOUT), as well as protect the MPC1100A-54-0000 power card module.

The MP8500 can also send a zero-current detection (ZCD) signal to the MP2981 once a 0A current is detected. Then the MP2981 aligns the PWM off time and ZCD signal by fine-tuning the PWM on time (t_{ON}) to let the MPC1100A-54-0000 operate at the resonant frequency.

During the dead time, the transformer's magnetizing inductor current discharges the FET's output capacitor to zero before the FET turns on. This helps the FET achieve zerovoltage switching (ZVS) on its primary side. The MP8500 turns off after ZCD, and then zerocurrent switching (ZCS) is implemented.

9

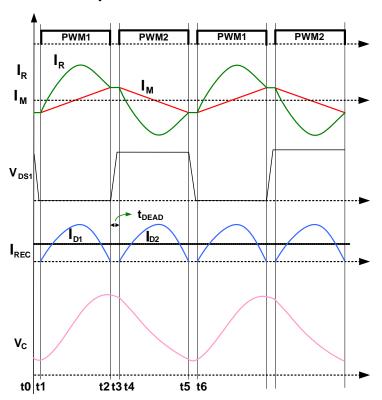


Figure 2: LLC Waveform

Power-On Sequence

Multiple-Time Programmable (MTP) Memory Operation

The MP2981 uses the multiple-time programmable (MTP) memory to store the configuration parameters, including the switching frequency (f_{SW}), soft-start time (t_{SS}), and protection parameters. Default values are preconfigured during manufacturing. Data can be reconfigured using the STORE_USER_ALL command (17h) or STORE_ALL command (15h) via the PMBus/I²C interface.

The configurations are restored by the MTP during the power-on sequence, or by receiving a RESTORE_USER_ALL (18h) command or RESTORE_ALL (16h) command from the PMBus/I²C. Figure 3 shows the device's system state machine. ENABLE_CMD means that the MSB of 01H is 1. MEMORY_OK means that the MTP has no signature error or CRC error, or that an MTP fault state has been cleared after copying the MTP.

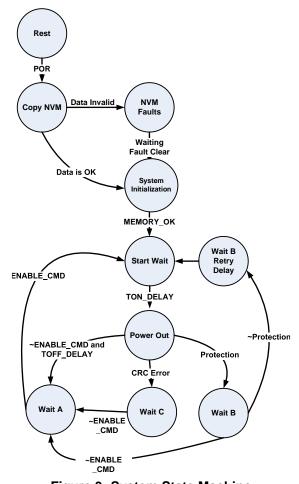


Figure 3: System State Machine

MTP operation can be easily accomplished with MPS's GUI software, downloaded from the MPS website. The MTP can be subjected to more than 100,000 erase and write cycles.

Start-Up Sequence

After VDD33 is ready, the internal reset of the MP2981 is released and the clock starts ticking (see Figure 4). The MP2981 begins to copy data regardless of the EN pin's state. Then the MPC1100A-54-0000 can be powered on by turning on EN, pulling VIN high, or by receiving an ON command.

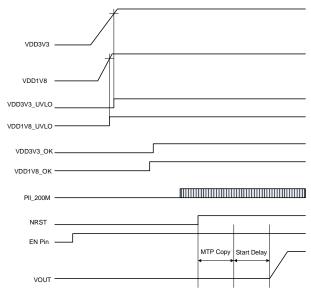


Figure 4: MP2981 Start-Up Sequence

Soft Start

The MP2981 adopts pulse-width modulation (PWM) mode for the first PWM cycle during soft start. During the first t_{ON} increasing stage, PWM runs at the maximum frequency. The PWM on time begins at TON_MIN_LIM (1Fh), bits[13:8] and increases to TON_MIN (1Ch).

The first dead time value is (TON_MIN + DEAD_TIME (1Bh) - TON_MIN_LIM). Then it drops to DEAD_TIME (1Bh), which is the normal working value. The frequency remains the same.

During the second t_{ON} increasing stage, the PWM frequency is reduced from its maximum value to the resonant frequency. t_{ON} increases from TON_MIN (1Ch) to TON_NORMAL (1Eh), and the dead time is fixed. This helps reduce the inrush current during the first PWM cycles during soft start compared to traditional soft start methodology.

Primary ZCD Loop

The MP2981 detects the ZCD signal from the synchronous rectifier (SR), and adjusts the PWM frequency to its resonant value according to ZCD. ZCD going high (or low, selected by SEL_ZCD_NEG (0Fh), bit[14]), means that the SR current goes negative. Both phases have their own ZCD, which can be enabled together or separately (0Fh, bits[6:5]).

The valid area for detecting ZCD is set by register 0Bh. For more details, see the ZCD_TIME_SET (0Bh) section on page 24. If the ZCD edge is within the valid setting area, toN falls by WEIGHTN_ZCD (29h), bits[15:8]. If not, toN increases by WEIGHTP_ZCD (29h), bits[6:0]. The adjusting speed is determined by register 29h. After 256 continuous valid ZCD pulses (including phase 1 and phase 2), toN drops by 5ns. If no valid ZCD occurs within 256 continuous PWM pulses (including phase 1 and phase 2), then toN increases by 5ns.

This function can be limited by the sampled SR current. The TDC current must be within the light-load and heavy-load limitations defined by register 0Ch if the load limit is enabled (0Ch, bits[4]).

If LOADLOW_ZCDLOOP_EN (0Ch), bit[15] is not enabled, the ZCD adjusting frequency can be held. The frequency can be held if any of the following conditions are met:

- The CS1 pin current is below CMP_CS1_ENTERFREQ (1Ah), bit[8], and 1Ah, bits[3:0] is in the corresponding valid area
- The TDC current is below or equal to the level set by MFR_IOUT_LEVEL_L (49h), bits[7:0]

Under these conditions, the ZCD adjusting frequency is held since the SR's ZCD is not accurate under light-load conditions.

If the t_{ON} difference between neighboring PWM periods is within ZCDLOOP_HYS (0Bh), bits[10:8] for 256 PWM periods, the frequency is stable unless the load changes. t_{ON} can be locked if ZCDLOOP_LATCHTON_EN (0Ch), bit[5] is high. The synchronized ZCD in the MP2981 is delayed from SR current ZCD timing. The final t_{ON} can be fixed by

TON_ZCDLOOP_DEC (0Fh), bits[11:8] if ZCDLOOP_LATCHTON_EN (0Ch), bit[5] is enabled.

Fault Monitoring and Protections

The MPC1100A-54-0000 monitors the input voltage (V_{IN}) , output voltage (V_{OUT}) , output current (I_{OUT}) , MP8550 temperature, and MP2981 die temperature.

The MPC1100A-54-0000 also supports various fault monitoring and protections, including V_{IN} under-voltage lockout (UVLO), V_{IN} over-voltage protection (OVP), over-current protection (OCP) spike, OCP thermal design current (TDC), output OVP, under-voltage protection (UVP), over-temperature protection (OTP), and DrMOS fault protection.

V_{IN} Under-Voltage Lockout (UVLO) and Over-Voltage Protection (OVP)

 V_{IN} is sensed and monitored by the analog-to-digital converter (ADC). The ADC-sensed input voltage is converted to an unsigned binary format (READ_VIN (0.125V/LSB, 88h)) using the value set by VIN_CAL_GAIN (3Ah), which is proportional to the input voltage divider.

The READ_VIN value is compared with the VIN_ON (35h) and VIN_OFF (36h) values to control the V_{IN} UVLO threshold. If V_{IN} is below or equal to VIN_ON when the device is off (PWM is not generated during this time) or V_{IN} drops below VIN_OFF at any time, then V_{IN} UVLO occurs (see Figure 5). The only exception is when the MTP is copying at start-up.

Figure 5: V_{IN} UVLO

V_{IN} UVLO is also enabled when both DISABLE_ALL_PRO (68h), bit[0] and RST_VIN_PRO (68h), bit[4] are low. V_{IN} UVLO resets all shutdown protections.

If V_{IN} ramps up, EN turns on, and there is no off command, then the MPC100A-54-0000 restarts and resumes normal operation.

If V_{IN} exceeds VIN_OV_FLT_LIM (40h), then V_{IN} OVP occurs and the chip shuts down. OVP does not occur when the MTP is being restored during start-up. It is controlled by registers 68h, bits[5:4] and 68h, bit[0].

V_{OUT} Under-Voltage Protection (UVP) and Over-Voltage Protection (OVP)

Output OVP and UVP are designed to protect the output fault statuses. If V_{OUT} exceeds the VOUT_MAX value, the chip shuts down immediately. Based on the mode set by the VOUT_OVP_MAX_LATCH bit, the part responds by going into latch-off or hiccup mode. It can also take no action if OVP is disabled.

The OVP_MAX threshold (OVP1) has eight options ranging between 1V and 1.7V, with 0.1V/step. The over-voltage threshold (OVP2) has four tracking options: 110%, 120%, 130%, and 140% of the reference voltage (V_{REF}).

If V_{OUT} drops quickly and falls below the UVP_MIN threshold, the device shuts down after a short delay time (6Dh, bits[5:0]) (see Figure 6). The under-voltage threshold has four tracking options: 90%, 80%, 70%, and 60% of the reference voltage (V_REF). Level 2 UVP (UVP2), also called V_{OUT} low protection, has four thresholds: 0.3V, 0.4V, 0.5V, and 0.6V.

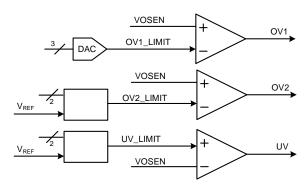


Figure 6: OVP1, OVP2, and UVP Protection Circuits

Over-Current Protection (OCP) and Thermal Design Current (TDC)

All parallel SR DrMOS currents of the same phase flow together into their own CS resistor (R_{CS}). Two-phase CS voltages are added after

the low-pass filter, and are then outputted on the IMON pin after a three-time buffer.

The ADC samples the IMON voltage (see Figure part 7). Then the digital calculates IOUT_CAL_GAIN (38h) and IOUT CAL OFFSET (39h), as READ IOUT (8Ch) from the ADC result (9Bh), which is compared to the output current limit (register 6Ah) to determine whether an overcurrent (OC) condition has occurred.

If the thermal design current (TDC) remains high for longer than the set time (6Ah), this protection shuts down the module.

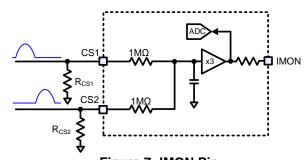


Figure 7: IMON Pin

Over-Current Protection (OCP) Spike

OCP is designed to limit the output current when the load consumes more current than the circuit can handle. The MP8500's CS pin sources a current that is proportional to I_{OUT} (5 μ A/A), and generates a voltage by connecting a resistor to GND. The CS pins (CS1 and CS2) of both phases are compared to the peak CS levels (OCSPK_H and OCSPK_L) (see Figure 8).

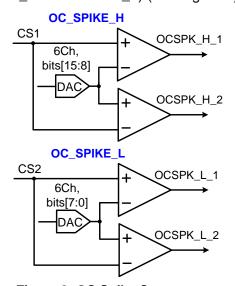


Figure 8: OC Spike Comparators

If the current drops to the lower level, the t_{ON} accumulator decreases by the value of WEIGHT_OCSPK_L (32h) (see Figure 9). After dropping to a sufficient value, ton decreases by 5ns. The minimum ton value is TON_MIN (1Ch). In each PWM cycle, the ton values for both phases are the same.

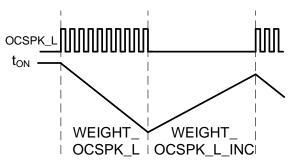


Figure 9: OCSPK L

The two OC spikes cannot shut off the chip directly.

When the OC conditions are removed, ton gradually increases to the original value of WEIGHT OCSPK H or WEIGHT OCSPK L. The greater OC value has the higher priority.

The SR_PWM pins (PWM pins for the MP8500) are designed to turn off later than the PWMP pins (PWM signal for the primary edge) on the MP2981 during an OC spike to reduce the SR current flowing through the diodes. This is set by register 08h, bits[15:12], and bits[6:4]. See the CTRL_OC (08h) section on page 23 for more details.

Over-Temperature Protection (OTP)

The SR temperature and controller temperature are both sensed by the ADC. These values trigger different responses that are independent from one another. However, the device enters latch-off or hiccup mode if either condition is triggered.

The MP8500 sends the temperature-sense signal for the MP2981's TEMP pin. If the MP8500 triggers a CS fault and enters a protection mode, it pulls the TEMP pin to 3.3V. The MP2981 must have a half-divider on the TEMP pin so that the MP2981 can send the signal to the comparator and the ADC.

MTP Fault

If the data in the MTP is determined to be invalid by the cyclic redundancy check (CRC), then the

system enters the MTP fault state and waits for the error to be cleared.

Communication Failure

A data transmission fault occurs when information is not properly transferred between the devices. There are several data transmission faults:

- Sending too little data
- Reading too little data
- Host sending too many bytes
- Reading too many bytes
- Improperly set read bit in the address byte
- Unsupported command codes

PMBus/I²C Communication

The MPC1100A-54-0000 supports real-time monitoring for the VR operation parameters and status with PMBus/I2C.interface. Table 1 lists the monitored parameters.

Table 1: PMBus/I²C Monitored Parameters

Parameter	PMBus/I ² C
Vouт	62.5mV/LSB
louт	0.25A/LSB
Temperature	1°C
V_{IN}	0.125V/LSB
Die temperature	1°C
OVP	✓
UVP	✓
OCP	✓
OTP	✓
V _{IN} UVLO	✓
V _{IN} OV	✓
CML	✓

PMBus/I²C Interface

To support multiple VR devices using the same PMBus/I²C interface, the MFR ADDR PMBus register or the ADDR pin can configure the PMBus/I²C address.

The address is a 7-bit code. The 3MSB are set by the register. The 4LSB bit address can either be set by the register or by the ADDR voltage. The 00h address is reserved as an all call address, which can be set for a single chip.

The ADDR voltage is set by the voltage divider from the VDD18 voltage.

Table 2 shows the resistor values for different PMBus/I²C addresses when the 3MSB are set to 3'b010.

Table 2: Setting the PMBus/I²C Address (4LSB)

PMBus/I ² C Address	Setting Point (V)	R _{TOP} (kΩ) 1%	R _{ВОТТОМ} (kΩ) 1%
20h	0	-	0
21h	0.031	33.2	0.576
22h	0.055	33.2	1.05
23h	0.084	33.2	1.62
24h	0.115	33.2	2.26
25h	0.156	33.2	3.16
26h	0.203	33.2	4.22
27h	0.266	33.2	5.76
28h	0.338	33.2	7.68
29h	0.432	33.2	10.5
2Ah	0.542	33.2	14.3
2Bh	0.677	33.2	20.0
2Ch	0.845	33.2	29.4
2Dh	1.049	33.2	46.4
2Eh	1.301	33.2	86.6
2Fh	1.549	33.2	20.5

There are a total of five transmission structures, listed below:

- 1. Send command only
- 2. Write byte
- 3. Write word
- 4. Read byte
- 5. Read word

To read or write to the MPC1100A-54-0000 registers, the PMBus/I²C or I²C command must be compliant with the corresponding register and byte number.

The PMBus/I²C communication frequency can support 1MHz.

Figure 10 shows the supported PMBus/I²C transmission structure without packet error checking (PEC).

Figure 11 shows the supported PMBus/I²C transmission structure with PEC.

The PMBus/I²C or I²C commands and register map of the MPC1100A-54-0000 is the same as the MP2981. Refer to the MP2981 datasheet for additional details.

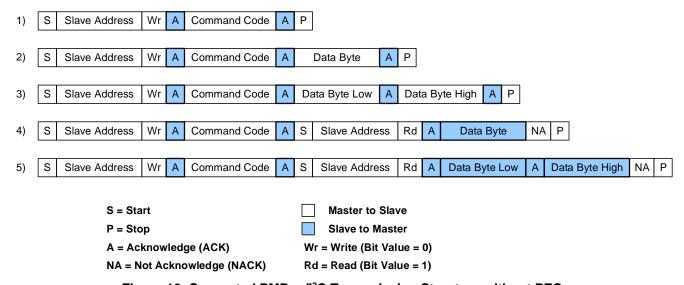


Figure 10: Supported PMBus/I²C Transmission Structure without PEC

MPC1100A-54-0000 - NON-ISOLATED, FIXED RATIO, 300W, DIGITAL DC/DC MODULE

NOT RECOMMENDED FOR NEW DESIGNS, REFER TO MPC1100C-54-0002 Wr Α Α Slave Address Command Code PEC Byte 1) S Slave Address Wr Α Command Code Α PEC Byte Α Р 2) Data Byte Α S Slave Address Wr Command Code Data Byte Low Α Data Byte High PEC Byte Α Ρ 3) Α 4) Slave Address Wr Command Code S Slave Address Rd Α Data Byte Α PEC Byte NA Ρ Slave Address Wr Command Code Α S Slave Address Data Byte Low 5) Rd Α Data Byte High Α PEC Byte NA Ρ S = Start **Master to Slave** P = Stop Slave to Master A = Acknowledge (ACK) Wr = Write (Bit Value = 0) NA = Not Acknowledge (NACK) Rd = Read (Bit Value = 1)

Figure 11: Supported PMBus/I²C Transmission Structure with PEC

PMBUS/I²C MEMORY PAGE 0 COMMANDS/REGISTERS

Command Code	Command Name	Туре	Bytes
0x00	PAGE	R/W	1
0x01	OPERATION	R/W	1
0x03	CLEAR_FAULTS	Send	0
0x04	CTRL_PWM	R/W	2
0x05	MFR_ADC_HOLD_TIME	R/W	1
0x06	CTRL_VR	R/W	2
0x07	CTRL_MTP	R/W	2
0x08	CTRL_OC	R/W	2
0x09	LOW_POWER_SET_BIT	R/W	1
0x0b	ZCD_TIME_SET	R/W	2
0x0c	ZCD_LOOP_SET	R/W	2
0x0e	SKIP_SR_PWM_SET	R/W	2
0x0f	CTRL_PWM_BK	R/W	2
0x15	STORE_ALL	Send	0
0x16	RESTORE_ALL	Send	0
0x17	STORE_USER_ALL	Send	0
0x18	RESTORE_USER_ALL	Send	0
0x19	MFR_VOUT_SEL	R/W	2
0x1A	MFR_IOUT_SEL	R/W	2
0x1B	DEAD_TIME	R/W	1
0x1C	TON_MIN	R/W	2
0x1D	TON_MAX	R/W	2
0x1E	TON_NORMAL	R/W	2
0x1F	TON_MIN_LIM	R/W	2
0x21	MFR_REF_CONFIG	R/W	2
0x22	VOUT_TRIM	R/W	1
0x25	TRANSFORMER_RATIO	R/W	2
0x29	WEIGHT_ZCD	R/W	2
0x2A	SR_PWM_SETA_PRIDRV	R/W	2
0x2B	SS_SRNEG_SET	R/W	2
0x2C	SR_PWM_SETB	R/W	2
0x2D	MFR_SLOPE_SR	R/W	2
0x2E	MFR_SLOPE_BLK	R/W	2
0x2F	PRISETBLK_WEIGHT_SS	R/W	2
0x30	WEIGHT_2_1	R/W	2
0x31	WEIGHT_4_3	R/W	2
0x32	WEIGHT_OCSPK_L_N	R/W	2
0x33	WEIGHT_OCSPK_INC	R/W	2
0x34	MFR_VIN_DROP_SET	R/W 2	
0x35	VIN_ON	R/W	2
0x36	VIN_OFF	R/W	2
0x38	IOUT_CAL_GAIN	R/W	2
0x39	IOUT_CAL_OFFSET	R/W	2

PMBUS/I²C MEMORY PAGE 0 COMMANDS/REGISTERS (continued)

Command Code	Command Name	Туре	Bytes
0x3A	VIN_CAL_GAIN	R/W	2
0x3B	VOUT_CAL_GAIN	R/W	2
0x40	VIN_OV_FLT_LIM	R/W	2
0x42	TEMP_GAIN_OFFSET	R/W	2
0x43	DIETEMP_GAIN_OFFSET	R/W	2
0x44	MFR_USER_PWD	W	2
0x45	MFR_MTP_WP	R/W	1
0x46	SKIPDRMOS_SR_ERARLI	R/W	2
0x49	MFR_IOUT_LEVEL	R/W	2
0x4B	MFR_VCAL_I_MAX	R/W	2
0x4C	DC_TRIM	R/W	1
0x50	MPS_CODE	R/W	2
0x51	PRODUCT_CODE	R/W	2
0x52	CONFIG_ID	R/W	2
0x53	CONFIG_REV	R/W	2
0x5A	CALVO_LOW_TON_SS_L	R/W	2
0x5B	TON_SS_H	R/W	2
0x5E	POWER_GOOD_ON	R/W	2
0x5F	POWER_GOOD_OFF	R/W	2
0x60	PROTECT_DELAY	R/W	1
0x62	PWRGD_DELAY	R/W	1
0x63	START_DELAY	R/W	2
0x64	OFF_DELAY	R/W	2
0x65	MFR_OTP_SET	R/W	2
0x66	MFR_DIE_OTP_SET	R/W	2
0x67	PMBUS/I ² C_ADDR_SET	R/W	1
0x68	MFR_PROTECT_CFG	R/W	2
0x69	OVP_UVP_VID_SET	R/W	2
0x6A	OCP_TDC_SET	R/W	2
0x6B	OCP_SPIKE_TIMES_SET	R/W	2
0x6C	OCP_SPIKE_LEVEL	R/W	2
0x6D	UVP_MIN_SET	R/W	1
0x79	STATUS_WORD	R	2
0x7A	STATUS_VOUT	R	1
0x7B	STATUS_IOUT	R	1
0x7C	PROTECT_SIG_GRP	R	2
0x7D	STATUS_TEMP	R	1
0x7E	STATUS_CML	R	1
0x80	SYS_STATE_DBG R		1
0x81	FINAL_PMBUS/I ² C_ADDR	R	1
0x82	REG_LAST_FAULT_MTP	R	2

PMBUS/I²C MEMORY PAGE 0 COMMANDS/REGISTERS (continued)

Command Code	Command Name	Туре	Bytes
0x88	READ_VIN	R	2
0x8B	READ_VOUT	R	2
0x8C	READ_IOUT	R	2
0x8D	READ_TEMP	R	1
0x8E	READ_DIE_TEMP	R	1
0x90	USER_KEY_INPUT	W	2
0x96	READ_POUT	R	2
0x99	VIN_SENSE	R	2
0x9A	VOUT_SENSE	R	2
0x9B	IOUT_SENSE	R	2
0x9C	TEMP_SENSE	R	2
0x9D	DIE_TEMP_SENSE	R	2
0x9E	TON_PWMP	R	2
0x9F	TON_SR_PWM	R	2
0xF1	CLR_LAST_FAULT_WMTP	Send	0
0xF2	READ_LAST_FAULT_TRIG	Send	0
0xF3	CLEAR_STORE_FAULTS	Send	0
0xF4	CLEAR_MTP_FAULTS	Send	0

PAGE 0 REGISTER MAP

PAGE (00h)

The PAGE command configures, controls, and monitors the device through only one physical address to support normal operation, testing mode, and debugging mode.

Command	PAGE								
Format		Unsigned binary							
Bit	7	7 6 5 4 3 2 1 0							
Access	R/W	R/W R/W R/W R/W R/W R/W R/W							
Function		PAGE						GE	

Bits	Bit Name	Description
7:2	RESERVED	Reserved. Bits[7:2] must set to 0 when changing bits[1:0].
1:0	PAGE	2'b00: Page 0. Normal and trim registers (read/write registers) can be stored in the MTP 2'b01: Page 1. Unused 2'b10: Page 2. Each PMBus/I ² C command (not including (00h)) directly reads/writes to the MTP cells 2'b11: Page 3. Debugging/testing registers. Not stored in the MTP Users should only use Page 0 to avoid unintentionally entering test mode.

OPERATION (01h)

The OPERATION command turns the output on or off by working with the EN pin. The MPC1100A-54-0000 remains in the commanded operating mode until another different OPERATION command is sent, or the state of EN changes.

Command		OPERATION													
Format		Unsigned binary													
Bit	7	7 6 5 4 3 2 1 0													
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W							
Function															

Bits	Bit Name	Description
7	OPERATION	1'b1: Turn on 1'b0: Turn off
6:0	RESERVED	Reserved. R/W bits are available, but do not change the device.

CLEAR_FAULTS (03h)

The CLEAR_FAULTS command clears any fault bit in the following status registers: STATUS_WORD (79h), STATUS VOUT (7Ah), STATUS IOUT (7Bh), STATUS TEMP (7Dh), and STATUS CML (7Eh).

This command is write-only. There is no data byte for this command.

CTRL_PWM (04h)

The CTRL_PWM command controls PWM operation. The positive and negative edges of the SR_PWM pins (SR_PWMs) can be adjusted using the PWMP pins. The SR_PWMs can be made to turn off earlier or later than the time set by the PWMP pins.

Command								CTRL	_PWM							
Format		Unsigned binary														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function																

Bits	Bit Name	Description
15	RESERVED	Reserved. R/W bits are available, but do not change the device.
		Enables setting the MP2981's SKIP_EN pin high during soft start.
14	SKIP_SS_EN	1'b1: Enabled. The SKIP_EN pin is pulled high during soft start 1'b0: Disabled. The SKIP_EN pin is pulled low during soft start
13	VOUT_SKIP_EN	Enables V_{OUT} skipping. Determines what happens after V_{OUT} ramps above $VOUT_SKIP_H$ (19h), bits[3:2], and before V_{OUT} ramps below $VOUT_SKIP_L$ (19h), bits[1:0].
.0	V001_01	1'b1: Shut down both SR_PWM pins during the dead time and after soft start. If 04h, bit[10] = 0, the primary PWMs also shut off 1'b0: No PWM shuts off
		Enables the primary closed loop.
12	CLOSE_LOOP_EN	1'b1: Enabled 1'b0: Disabled
		Enables the primary zero-current detection (ZCD) loop.
11	ZCD_LOOP_EN	1'b1: Enabled 1'b0: Disabled
10	VOLT SKID DWMD FN	Determines how the part responds when V_{OUT} skipping is enabled and V_{OUT} exceeds its limit.
10	VOUT_SKIP_PWMP_EN	1'b1: PWMP remains on when V _{OUT} exceeds its limit during skip mode 1'b0: PWMP turns off when V _{OUT} exceeds its limit during skip mode
9	SKIPSR_VIN_DROP_EN	Shuts off SR_PWM if the chip detects that V_{IN} is dropping quickly, or VOSEN exceeds the V_{IN} ADC value.
9	SKIPSK_VIIN_DKOP_EIN	1'b1: Enabled 1'b0: Disabled
8:7	RESERVED	Reserved. R/W bits are available, but do not change the device.
		Adjusts whether the SR_PWMs turn on/off before or after the PWMP pins.
6	SR_ADJ_NORMAL_EN	1'b1: Enabled. If 0Fh, bit[15] and 04h, bits[4:1] are set to 1'b1, then this bit should be set to 1'b1 1'b0: Disabled. If 0Fh, bit[15] and 04h, bits[4:1] are set to 1'b0, then this bit should be set to 1'b0
5	SR_NEG_ADJ_SS_EN	Shuts off SR_PWM after or before PWMP during soft start, according to ton. This bit is related to registers 5Ah, 5Bh, and 2Bh.
3	SK_NEG_ADJ_33_EN	1'b1: Enabled 1'b0: Disabled
		Shuts off SR_PWM a fixed time before PWMP. Related to register 2Ah.
4	SR_FIXED_DEC_EN	1'b1: Enabled 1'b0: Disabled
		Shuts off SR_PWM a fixed time after PWMP. Related to register 2Ah.
3	SR_FIXED_EXT_EN	1'b1: Enabled 1'b0: Disabled
		Shuts off SR_PWM a fixed time before the next PWMP. Related to register 2Ch.
2	SR_NEG_ADJ_EN	1'b1: Enabled 1'b0: Disabled
		Turns on SR_PWM after PWMP. Related to register 2Ch.
1	SR_POS_DEC_EN	1'b1: Enabled 1'b0: Disabled

MPC1100A-54-0000 - NON-ISOLATED, FIXED RATIO, 300W, DIGITAL DC/DC MODULE

NOT RECOMMENDED FOR NEW DESIGNS, REFER TO MPC1100C-54-0002

0	CD FN	Makes SR_PWM equal to PWMP if no other adjusting function is enabled. Only enabled when the part is not in soft start, and 04h, bit[6] = 0.
0	SR_EN	1'b1: SR_PWM = PWMP 1'b0: SR_PWM = 0

MFR_ADC_HOLD_TIME (05h)

The MFR_ADC_HOLD_TIME command sets the waiting time between finishing one channel sampling and starting the next channel sampling.

Command				MFR_ADC_	HOLD_TIME									
Format		Unsigned binary												
Bit	7	6	6 5 4 3 2 1 0											
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
Function	Х		MFR_ADC_HOLD_TIME											

Bits	Bit Name	Description											
7	RESERVED	Not defined. Read-only.											
6:0	MFR_ADC_HOLD_TIME	The time after one channel finishes, and before the next channel starts. 100ns/LSB.											

CTRL_VR (06h)

The CTRL_VR command configures certain chip functions, excluding pulse-width modulation (PWM).

Command		CTRL_VR														
Format							L	Insigne	d binar	у						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function																

Bits	Bit Name	Description
15	RESERVED	Reserved. R/W bits are available, but do not change the device.
		Controls the analog output to enable bandgap (BG) chop.
14	CHOP_BG	1'b1: Enabled 1'b0: Disabled
		Selects the PSYS current rate by sending different READ_POUT (96h) data.
13	PSYS_SEL_2W	1'b1: 2 with LSB, send READ_POUT (96h), bits[10:1] to the 10-bit PSYS digital-to-analog converter (DAC)
		1'b0: 1 with LSB, send READ_POUT (96h), bits[9:0] to the DAC
		Enables the DC loop.
12	DC_CAL_EN	1'b1: Enabled 1'b0: Disabled
		Selects the die temperature's voltage vs. temperature (V-T) rate.
11	DIE_TEMP_RATE_NEG	1'b1: Negative 1'b0: Positive
10:9	RESERVED	Reserved. R/W bits are available, but do not change the device.
8	PMBUS/I ² C_ADDR_ KEEP_SAMP	1'b1: The ADC constantly samples the ADDRP pin 1'b0: The ADC samples ADDRP only seven times after the MTP address reaches 8'h20
7:4	PMBUS/I ² C_FILTER_SET	PMBus/l ² C filter on the digital side. 10ns/LSB.

3	WAIT_VIN_START	1'b1: Wait until V_{IN} is ready (READ_VIN > VIN_ON) before ramping V_{REF} and generating PWMs 1'b0: Do not wait until V_{IN} is ready (READ_VIN > VIN_ON) before ramping V_{REF} and generating PWMs
2	SEL_PWRGD_1REF_ 0TON	Selects V _{REF} ramping or to _N increasing to act as the PG reference. 1'b1: V _{REF} 1'b0: t _{ON}
1	MFR_ONOFFDLY_CLK_ 1L0S	Selects the counting clock for START_DELAY and OFF_DELAY during start-up and shutdown. 1'b1: 20kHz 1'b0: 50kHz
0	KEEP_TON_MIN_LMT_SS	Determines the V _{OUT} threshold before increasing to _N during soft start. 1'b1: t _{ON} stays at the TON_MIN_LIM (1Fh) value and does not increase until V _{OUT} exceeds VOUT UVP_MIN (19h) 1'b0: t _{ON} does not stay at the TON_MIN_LIM (1Fh) value, and begins increasing before V _{OUT} exceeds VOUT UVP_MIN (19h)

CTRL_MTP (07h)

The CTRL_MTP command sets the MTP parameters. It is recommended to use the vendor's preset configurations.

Command								CTRL	_MTP							
Format		Unsigned binary														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	Χ															

Bits	Bit Name	Description
		Enables cyclic redundancy check (CRC) for the MTP user.
15	CRC_FAULT_USER_EN	1'b1: Enabled 1'b0: Disabled
		Enables CRC for the MTP trim.
14	CRC_FAULT_TRIM_EN	1'b1: Enabled 1'b0: Disabled
13	CRC_FAULT_TOT_EN	Enables CRC for the total MTP. Do not set this bit to 1 when using 17h (STORE_USER_ALL) to write to the MTP.
13		1'b1: Enabled 1'b0: Disabled
	MTD FAULT BLOCK	Determines whether an MTP fault prevents start-up, including the signature fault and CRC fault.
12	MTP_FAULT_BLOCK_ EN	1'b1: Enabled. If an MTP fault occurs, the chip enters the MTP fault state, and a CLEAR_MTP_FAULTS (F4h) command must be sent to exit the state 1'b0: Disabled. The chip starts up if an MTP fault occurs
		Prevents start-up if the data read from the MTP LAST_FAULT_ADDR is not 0.
11	LAST_FAULT_BLOCK_ EN	1'b1: Enabled. If the last fault exists, the chip must receive a CLEAR_STORE_FAULTS (F3h) command to start up 1'b0: Disabled. The chip starts up, even if the last fault exists
10:6	RESERVED	Reserved. R/W bits are available, but do not change the device.

5	CAL_FAULT_CRC_DIS	1'b1: Do not include MTP_FAULT_RECORD_ADDR (the 2 bytes in the MTP that store protection faults, such as OVP) when calculating CRC_TOT 1'b0: Include MTP_FAULT_RECORD_ADDR when calculating CRC_TOT
4	NO_FAULT_STORE	1'b1: Store 00h data to MTP_FAULT_RECORD_ADDR 1'b0: Store the value of MEMORY_ADDR (7Ah) to MTP_FAULT_RECORD_ADDR when storing is not triggered by a fault
3	FAULT_SINGLE_EN	1'b1: Only store the 2-byte MTP_FAULT_RECORD_ADDR 1'b0: Store the whole third section of the MTP when storing FAULT_RECORD
2	RESERVED	Reserved. R/W bits are available, but do not change the device.
1	PROTECT_FAULT_ RECORD_EN	Enables FAULT_RECORD. 1'b1: Enabled 1'b0: Disabled
0	MFR_MTP_COPY_EN	Reads the MTP (16h or 18h or F6h) when the device outputs power; ineffective for the READ_LAST_FAULT command (F2h) or the reading MTP commands (16h or 18h or F6h) on Page 2.
		1'b1: Enabled 1'b0: Disabled

CTRL_OC (08h)

The CTRL_OC command configures the over-current (OC) spike function. The PWM t_{ON} is reduced when an OC spike occurs, and recovers after the OC spike condition is removed (see Figure 12). This protection cannot directly shut down the chip.

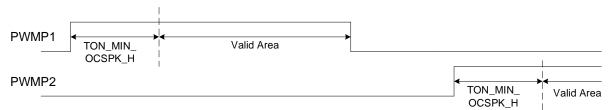


Figure 12: OCSPK_H

Command		CTRL_OC														
Format		Unsigned binary														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function																

Bits	Bit Name	Description
15:12	SR_DLY_OCSPK	Sets the time lengths of the SR_PWM pins' wait period before turning off after the PWMP pins when an over-current (OC) spike occurs. If any bit between bits[6:4] of this command is high, there must be a <1Bh (dead time setting). 5ns/LSB.
11:8	TON_MIN_OCSPK_H	If an OC spike occurs on CS1 (OCSPK_H), the minimum ton can be calculated with the equation below:
		(TON_MIN_OCSPK_H + 1) x 5ns
7	RESERVED	Reserved. R/W bits are available, but do not change the device.
6	SR_DLY_OCSPK_H_ SS_EN	Turns off the SR_PWM pins after the PWMP pins if an OC spike occurs on CS1 (OCSPK_H) during soft start.
б		1'b1: Enabled 1'b0: Disabled

	•	
5	SR_DLY_OCSPK_H_EN	Turns off the SR_PWM pins after the PWMP pins if an OC spike occurs on CS1 (OCSPK_H) during a time that is not soft start.
5	SK_DLT_OCSFK_H_EN	1'b1: Enabled 1'b0: Disabled
4	SB DLV OCSDIC I EN	Turns off the SR_PWM pins after the PWMP pins if an OC spike occurs on CS1 (OCSPK_H) during normal operation.
4	SR_DLY_OCSPK_L_EN	1'b1: Enabled. Bit[5] must be set to 1'b1 1'b0: Disabled
2	3 OC_TRIG_SR_EN	Turns on the SR_PWM pins immediately if they are not on when an OC spike occurs on CS1 or CS2 (OCSPK_H or OCSPK_L, respectively) while PWMP is on.
3		1'b1: Enabled 1'b0: Disabled
	OCSPK_H_TON_SS_	Adjusts ton if an OC spike occurs on CS1 (OCSPK_H) during soft start.
2	EN	1'b1: Enabled 1'b0: Disabled
4	OCCUL II TON EN	Adjusts t_{ON} if an OC spike occurs on CS1 (OCSPK_H) during a time that is not soft start.
1	OCSPK_H_TON_EN	1'b1: Enabled 1'b0: Disabled
0	OCCUL TON EN	Adjusts t_{ON} if an OC spike occurs on CS2 (OCSPK_L). This cannot be adjusted during soft start.
0	OCSPK_L_TON_EN	1'b1: Enabled 1'b0: Disabled

LOW_POWER_SET_BIT (09h)

The LOW_POWER_SET_BIT command controls low-power mode.

Command		LOW_POWER_SET_BIT								
Format		Unsigned binary								
Bit	7	6	5	4	3	2	1	0		
Access	R	R	R	R	R	R	R/W	R/W		
Function	Х	Х	Х	Х	Х	X				

Bits	Bit Name	Description
7:2	RESERVED	Not defined. Read-only.
1	RESERVED	Reserved. R/W bits are available, but do not change the device.
0	LOW_POWER_SET_BIT	1'b1: The chip remains in low-power mode when the EN pin is low 1'b0: The chip operates normally when the EN pin is low

ZCD_TIME_SET (0Bh)

The ZCD_TIME_SET command configures frequency adjusting via the zero-current detection (ZCD) function (primary ZCD loop). Figure 13 on page 25 shows the valid ZCD1 area for this function. The valid ZCD2 area is determined by SR_PWM2. When ZCD occurs within the valid area, ton decreases by WEIGHTN_ZCD (29h), bits[15:8]. When a ZCD event occurs outside the valid area, ton increases by WEIGHTP_ZCD (29h), bits[6:0].

Frequency adjusting completes if the following conditions are met:

- The difference between neighboring ton values is within ZCDLOOP_HYS (0Bh), bits[10:8] for more than 256 periods.
- There is no load change, or another conditional change.

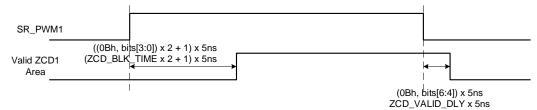


Figure 13: Valid ZCD1 Area for ZCD Loop Function

Command		ZCD_TIME_SET														
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	Х	Χ	Х	Χ	Χ	T	TON_HYS ZCD_V				ZCD_VALID_DLY ZCD_BLK_TIM					E

Bits	Bit Name	Description					
15:11	RESERVED	Not defined. Read-only.					
10:8	ZCDLOOP_HYS	When t_{ON} stays between TON_LAST_PERIOD \pm ZCDLOOP_HYS for about 256 periods, the loop is stable. 5ns/LSB.					
7	RESERVED	Reserved. R/W bits are available, but do not change the device.					
6:4	ZCD_VALID_DLY	The ZCD valid area after the delayed SR_PWM. 5ns/LSB.					
3:0	ZCD_BLK_TIME	The beginning area of SR_PWM is invalid for ZCD. 10ns/LSB. The ZCD blanking time can be calculated with the following equation:					
		ZCD blanking time = (ZCD_BLK_TIME x 2 + 1) x 5ns					

ZCD_LOOP_SET (0Ch)

The ZCD_LOOP_SET command configures the adjusting frequency via the zero-current detection (ZCD) function (primary ZCD loop). If ZCDLOOP_LATCHTON_EN (0Ch), bit[5] is enabled and the frequency adjustment finishes (t_{ON} stays within the hysteresis threshold for more than 256 periods), then t_{ON} is fixed to TON_ZCDLOOP_DEC (0Fh), bits[11:8] (the 256th t_{ON}). If ZCDLOOP_LATCHTON_EN (0Ch), bit[5] is not enabled, then the adjustment continues calculating. If ZCDLOOP_LOADLMT_EN (0Ch), bit[4] = 1, then the ZCD loop is only enabled when the TDC current is within the load limitation.

Command		ZCD_LOOP_SET														
Format		Unsigned binary														
Bit	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0															
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		LOADLMT_H LOADLMT_L														

Bits	Bit Name	Description
15	LOADLOW_ZCDLOOP_EN	Enables the ZCD loop when the voltage of the CS1 pin drops below the skip SR_PWMs level (1Ah, bit[8] and 1Ah, bits[3:0]) or (READ_IOUT (8Ch) / 2) is below or equal to MFR_IOUT_LEVEL_L (49h), bits[7:0]).
		1'b1: Enables the ZCD loop function 1'b0: Disables the ZCD loop function
14:8	ZCDLOOP_LOADLMT_H	The load's high limit to enable the ZCD loop compared to READ_IOUT / 8 (from ADC sampling and then calculation). 2A/LSB.
7:6	RESERVED	Reserved. R/W bits are available, but do not change the device.
		Latches toN after toN stays in hysteresis for 256 periods.
5	ZCDLOOP_LATCHTON_EN	1'b1: Enabled 1'b0: Disabled

4	ZCDLOOP_LOADLMT_EN	Enables the load limitation for the ZCD loop. 1'b1: Enabled 1'b0: Disabled
3:0	ZCDLOOP_LOADLMT_L	The load's low limit to enable the ZCD loop compared to READ_IOUT / 4 (from ADC sampling and then calculation). 1A/LSB.

SKIP_SR_PWM_SET (0Eh)

The SKIP_SR_PWM_SET command configures the function that allows the SR_PWMs to be skipped under light-load conditions. Figure 14 shows the valid skip areas. When the CS1 pin is below CMP_CS1_ENTERFREQ (1Ah), the signal from CMP_CS1_ENTERFREQ goes high. The valid area to detect this comparator output to enter skip mode is defined below by bits[10:0]. This command is only valid for phase 1.

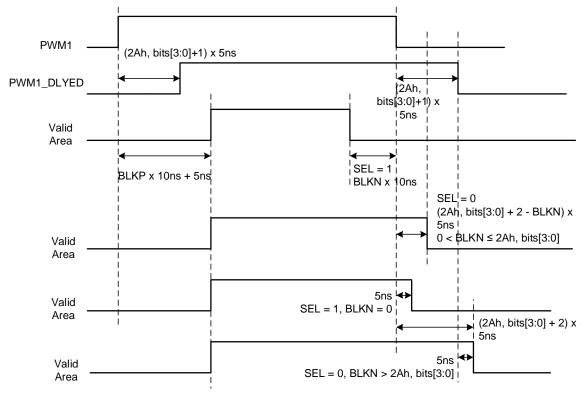


Figure 14: Valid Skip Area

Command		SKIP_SR_PWM_SET											
Format		Unsigned binary											
Bit	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
Access	R/W	V R/W											
Function						SEL SKIP_SR_PWM_BLKN_SEL SKIP_SR_PWM_BLKN							BLKN

Bits	Bit Name	Description
		Turns off SR_PWM when CS is low.
15	SKIP_SR_PWM_EN	1'b1: Enabled 1'b0: Disabled
14:12	SKIP_SR_PWM_NUM	Sets the off time for the SR_PWM periods. After the skip delay, the SKIP_SR_PWM_NUM and SR_PWM periods (phase 1 and 2) are skipped.
11	RESERVED	Reserved. R/W bits are available, but do not change the device.

10	SKIP_SR_PWM_BLKN_	Selects the valid area of SKIP_SR_PWM before or after the PWM1 pull-down pulse.
10	SEL	1'b1: The valid area is before the PWM1 pull-down pulse 1'b0: The valid area is after the PWM1 pull-down pulse
9:4	SKIP_SR_PWM_BLKP	Sets the blanking time of the valid area after a PWM1 pull-up pulse. The blanking time can be estimated with the equation below:
		Skip blank time = (SKIP_SR_PWM_BLKP x 10ns + 5ns)
3:0	SKIP SR PWM BLKN	Sets the blanking time for the valid area border to the PWM1 pull-down pulse. If SKIP_SR_PWM_BLKN_SEL = 1, the valid area border ahead of the PWM1 pull-down pulse is SKIP_SR_PWM_BLKN x 10ns. If SKIP_SR_PWM_BLKN_SEL = 0, the valid area border after the PWM1 pull-down pulse changes is based on the following scenarios:
3.0	SKIP_SK_FVVIVI_BLKIV	SKIP_SR_PWM_BLKN = 0: 5ns
		• 0 < SKIP_SR_PWM_BLKN < 2Ah, bits[3:0]: (2Ah, bits[3:0] + 2 x SKIP_SR_PWM_BLKN) x 5ns
		• SKIP_SR_PWM_BLKN > 2Ah, bits[3:0]: (2Ah, bits[3:0] + 2) x 5ns

CTRL_PWM_BK (0Fh)

The CTRL_PWM_BK command sets the PWM working options.

Command		CTRL_PWM_BK											
Format		Unsigned binary											
Bit	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
Access	R/W	W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/											
Function					TON	TON_ZCDLOOP_DEC							

Bits	Bit Name	Description
	SR POS EARLIERER	Turns on SR_PWM before PWMP. Related to 46h.
15	_EN	1'b1: Enabled 1'b0: Disabled
14	SEL_ZCD_NEG	1'b1: ZCD negative edge effective 1'b0: ZCD positive edge effective
13	CALVOUT_LOW_LMT_ TONL	1'b1: Disable the function that makes the SR_PWMs turn off after the PWMP pins when READ_VOUT, bits[8:1] exceeds CALVOUT_LOW_LVL, bits[5:0] 1'b0: Enable the SR_PWMs to always turn off after the PWMPs
12	RM_VOUTLOW_SS_ TONLOW	1'b1: Disable the turn off later function during the V_{OUT} low stage. The V_{OUT} low area (VOSEN < level, t_{ON} keeps TON_MIN_LIM) during soft start is not included in TONLL or TONL 1'b0: Enable the SR_PWM pins to turn off after the PWMP pins
11:8	TON_ZCDLOOP_DEC	If ZCDLOOP_LATCHTON_EN is enabled, t_{ON} is fixed to the t_{ON} value at the 256th cycle. 5ns/LSB. t_{ON} can be calculated with the following equation:
		ton - TON_ZCDLOOP_DEC x 5ns
7	RESERVED	Reserved. R/W bits are available, but do not change the device.
		Enables ZCD1.
6	ZCD1_EN	1'b1: Enabled 1'b0: Disabled
		Enables ZCD2.
5	ZCD2_EN	1'b1: Enabled 1'b0: Disabled

4	SR_ZCD_SEPARATE	1'b1: ZCD2 = ZCD2 pin 1'b0: ZCD2 = ZCD1 pin
3:0	RESERVED	Reserved. R/W bits are available, but do not change the device.

STORE_ALL (15h)

The STORE_ALL command instructs the PMBus/I²C slave device to copy the R/W contents from the Page 0 registers of the operating memory to the matching locations in the MTP when the command is sent for Page 0, Page 1, or Page 3 (not for Page 2).

This command can be used while the device is outputting power.

This command is write-only. There is no data byte for this command. Other unused MTP addresses are written to 0.

RESTORE_ALL (16h)

The RESTORE_ALL command instructs the PMBus/I²C slave device to copy the contents of the MTP to the matching locations in the operating memory. The values in the operating memory are overwritten by the value retrieved from the MTP. Any items that do not have matching locations in the operating memory are ignored.

This command cannot be used while the device is outputting power, unless MFR_MTP_COPY_EN (register 07h, bit[0] on Page 0) is set to 1.

This command is write-only. There is no data byte for this command.

STORE_USER_ALL (17h)

The STORE_USER_ALL command instructs the PMBus/I²C slave device to copy the read and write Page 0 registers of the operating memory (except the trim registers) to the matching locations in the MTP (inside MTP address 8'h00 to 8'hDF) when the command is sent for Page 0, Page 1, or Page 3 (not for Page 2).

This command can be used while the device is outputting power.

This command is write-only. There is no data byte for this command. Other unused MTP addresses inside the MTP addresses 8'h00 to 8'hDF are written to 0.

RESTORE_USER_ALL (18h)

The RESTORE_USER_ALL command instructs the PMBus/I²C slave device to copy the R/W contents of the MTP addresses 8'h00 to 8'hDF to the matching locations in the operating memory. The values in the operating memory are overwritten by the value retrieved from the MTP. Any items that do not have matching locations in the operating memory are ignored.

This command cannot be used while the device is outputting power, unless MFR_MTP_COPY_EN (register 07h, bit[0] on Page 0) is set to 1.

This command is write-only. There is no data byte for this command.

MFR_VOUT_SEL (19h)

The MFR_VOUT_SEL command configures VOUT_OVP_MAX, OVP_VID, UVP_VID, UVP_MIN, and VOUT_SKIP, then compares these values to the VOSEN pin.

Command		MFR_VOUT_SEL										
Format		Unsigned binary										
Bit	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
Access	R/W	V R/W										
Function				0	OVP_MAX OVP_VID UVP_VID UVP_MIN SKIP_H						SKI	P_L

MPC1100A-54-0000 Rev. 1.0 MonolithicPower.com **28**

Bits	Bit Name	Description
15:13	RESERVED	Reserved. R/W bits are available, but do not change the device.
12:10	OVP_MAX_LVL_SEL	
9:8	OVP_VID_LVL_SEL	
7:6	UVP_VID_LVL_SEL	See the tables below for more information.
5:4	UVP_MIN_LVL_SEL	The V _{REF} level in OVP_VID, UVP_VID, and VOUT_SKIP is the V _{OUT} reference DAC output (e.g. 21h, bits[7:0] x 6.25mV).
3:2	VOUT_SKIP_H_SEL	, , , , , , , , , , , , , , , , , , , ,
1:0	VOUT_SKIP_L_SEL	

OVP_MAX_LVL_SEL	0	1	2	3	4	5	6	7
OVP_MAX Level (V)	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7

Level Select	0	1	2	3
OVP_VID_LVL_SEL, OVP_VID level (V)	140% of V _{REF}	130% of V _{REF}	120% of V _{REF}	110% of V _{REF}
UVP_VID_LVL_SEL, UVP_VID level (V)	90% of V _{REF}	80% of V _{REF}	70% of V _{REF}	60% of V _{REF}
UVP_MIN_LVL_SEL, UVP_MIN level (V)	0.3	0.4	0.5	0.6
VOUT_SKIP_H_SEL, VOUT_SKIP_H level (V)	V _{REF} + 50mV	V _{REF} + 40mV	V _{REF} + 30mV	V _{REF} + 20mV
VOUT_SKIP_L_SEL, VOUT_SKIP_L level (V)	V _{REF} + 40mV	V _{REF} + 30mV	V _{REF} + 20mV	V _{REF} + 10mV

MFR_IOUT_SEL (1Ah)

The MFR_IOUT_SEL command configures the light-load levels (CMP_CS1_EXITSKIP and CMP_CS1_ENTERFREQ), which are compared to the CS1 pin. After CS1 exceeds CMP_CS1_EXITSKIP, the DrMOS stops skipping (SKIP_DRMOS_EN). When CS1 drops below CMP_CS1_ENTERFREQ, the SR_PWMs skip after a delay (SKIP_SR_PWM_EN) for a configurable number of PWM periods.

Command		MFR_IOUT_SEL									
Format		Unsigned binary									
Bit	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Access	R/W	V R/W									
Function											

Bits	Bit Name	Description
15:11	RESERVED	Reserved. R/W bits are available, but do not change the device.
10:9	CMP_CS1_EXITSKIP_ GAIN	Selects the current level's analog buffer gain when exiting skip mode. 2'b0x: Gain = 1 2'b10: Gain = 2 2'b11: Gain = 4
8	CMP_CS1_ENTERFREQ _GAIN	Selects the current level's analog buffer gain when entering skip mode. 1'b1: Gain = 2 1'b0: Gain = 1
7:4	CMP_CS1_EXITSKIP_ SEL	The final level is determined by bits[7:4], multiplied by the buffer gain.
3:0	CMP_CS1_ENTERFREQ _SEL	The final level is determined by bits[3:0], multiplied by the buffer gain.

Table 3 lists the values for CMP CS1 EXITSKIP. Table 4 lists the values for CMP CS1 ENTER.

Table 3: CMP_CS1_EXITSKIP Values

CMP_CS1_EXITSKIP_ CMP CS1 **GAIN, Bits[10:9] EXITSKIP (V)** 0 or 1 2 3 CMP CS1 EXITSKIP SEL. Mul 1 Mul 2 Mul 4 Bits[3:0] 0 0.08 0.160 0.320 1 0.085 0.170 0.340 2 0.09 0.180 0.360 0.380 3 0.095 0.190 4 0.1 0.200 0.400 5 0.105 0.210 0.420 0.220 6 0.11 0.440 0.460 7 0.115 0.230 8 0.12 0.240 0.480 9 0.125 0.250 0.500 10 0.13 0.260 0.520 11 0.135 0.270 0.540 12 0.14 0.280 0.560 13 0.145 0.290 0.580 14 0.15 0.300 0.600 15 0.155 0.310 0.620

Table 4: CMP_CS1_ENTER Values

CMP_CS1_ ENTERFREQ (V)	CMP_(ENTERFRE Bit[EQ_GAIN,
, ,	0	1
CMP_CS1_ ENTERFREQ_SEL, Bits[3:0]	Mul 1	Mul 2
0	0.03	0.06
1	0.035	0.070
2	0.04	0.080
3	0.045	0.090
4	0.05	0.100
5	0.055	0.110
6	0.06	0.120
7	0.065	0.130
8	0.07	0.140
9	0.075	0.150
10	0.08	0.160
11	0.085	0.170
12	0.09	0.180
13	0.095	0.190
14	0.1	0.200
15	0.105	0.21

DEAD TIME (1Bh)

The DEAD_TIME command sets the normal working dead time. During soft start, t_{ON} begins at TON_MIN_LIM (1Fh), bits[13:8], and the dead time is (TON_MIN (1Ch) + DEAD_TIME (1Bh) - TON_MIN_LIM). After V_{OUT} reaches UVP_MIN and the KEEP_TON_MIN_LMT_SS bit (06h, bit[0]) is set high, t_{ON} starts increasing. At the same time, the dead time decreases but remains at the same frequency (see Figure 15 on page 31).

If KEEP_TON_MIN_LMT_SS is not enabled, then t_{ON} and the dead time start immediately. When t_{ON} reaches TON_MIN, the dead time is DEAD_TIME (1Bh). The dead time remains at this value, t_{ON} keeps ramping until t_{ON} equals TON_NORMAL (1Eh), and soft start completes. For more details on the t_{ON} increasing speed, see the PRISETBLK_WEIGHT_SS section on page 36.

Command				DEAD	_TIME											
Format		Unsigned binary														
Bit	7	6	6 5 4 3 2 1 0													
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W								
Function	Х		DEAD_TIME													

Bits	Bit Name	Description
7	RESERVED	Not defined. Read-only.
6:0	DEAD_TIME	The real normal working dead time = ([6:0] + 1) x 5ns.

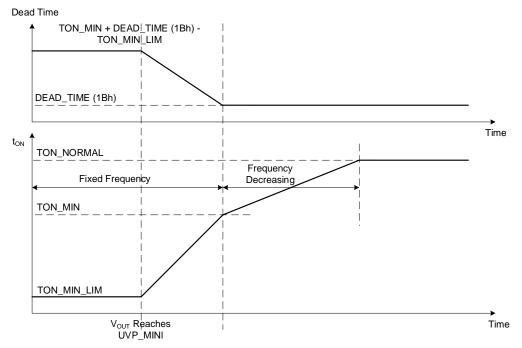


Figure 15: Soft Start ton and Dead Time

TON_MIN (1Ch)

The TON_MIN command sets the minimum ton in the zero-current detection (ZCD) loop and primary closed loop. It is also the end of soft start's first stage. For more details, see the DEAD_TIME (1Bh) section on page 30.

Command								TON	_MIN							
Format		Unsigned binary														
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R/W R/W R/W R/W R/W R/W R/W R/W I								R/W	
Function	Χ	Χ	Χ	Χ	Χ	Χ	TON_MIN									

Bits	Bit Name	Description
15:10	RESERVED	Not defined. Read-only.
9:0	TON_MIN	5ns/LSB.

TON_MAX (1Dh)

The TON_MAX command sets the maximum ton. In the zero-current detection (ZCD) loop and primary closed loop, ton is adjusted according to ZCD and the set signals. The adjusting process is limited between TON MIN (1Ch) and TON MAX (1Dh).

Command								TON	_MAX							
Format							ι	Jnsigne	d binar	у						
Bit	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R R/W R/W R/W R/W R/W R/W R/W R/W R/W									R/W	
Function	Χ	Х	Х	Χ	Χ	Х	TON_MAX									

	Bits	Bit Name	Description
Ī	15:10	RESERVED	Not defined. Read-only.
Ī	9:0	TON_MAX	5ns/LSB.

TON_NORMAL (1Eh)

The TON_NORMAL command sets the normal working ton. It is also the final ton for soft start, and the t_{ON} for open-loop operation.

Command							-	TON_N	ORMA	L						
Format							ι	Jnsigne	d binar	'n						
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R/W R/W R/W R/W R/W R/W R/W R/W								R/W	
Function	Χ	Χ	Χ	Х	Χ	Χ	TON_NORMAL									

Bits	Bit Name	Description
15:10	RESERVED	Not defined. Read-only.
9:0	TON_NORMAL	The real ton is (TON_NORMAL + 1) x 5ns.

TON_MIN_LIM (1Fh)

The TON_MIN_LIM command sets the starting ton for PWM during soft start.

Command							-	TON_N	1IN_LIN	/						
Format		Unsigned binary														
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W R/W R/W R/W R/W R/W R/W R/W								R/W						
Function			TON_MIN_LIM													

Bits	Bit Name	Description
15:14	RESERVED	Reserved. R/W bits are available, but do not change the device.
13:8	TON_MIN_LIM	The beginning of the soft-start pulse width. Only used during soft start. The pulse width can be calculated with the following equation:
		Pulse width = (TON_MIN_LIM + 1) x 5ns
7:0	RESERVED	Reserved. R/W bits are available, but do not change the device.

MFR_REF_SR_CTRL (21h)

The MFR_REF_SR_CTRL command configures the Vout DAC input (also called VID or VREF) and controls its slew rate. V_{REF} works as a reference in primary closed-loop operation, and is the base reference for OVP_VID and UVP_VID.

Command							MFF	R_REF	_SR_C	TRL						
Format		Unsigned binary														
Bit	15	15														
Access	R/W	R/W										R/W				
Function			V	ID_CO	UNTIN	G_STE	Р		MFR_REF_SET							

Bits	Bit Name	Description
		Selects the clock counting rate.
15	CLK_COUNTING_SEL	1'b1: 1µs 1'b0: 0.1µs
14:8	VID_COUNTING_STEP	Every VID_COUNTING_STEP x (1 μ s or 0.1 μ s) time period, VID increases or decreases by 6.25mV.
7:0	MFR_REF_SET	VID (V) = MFR_REF_SET x 6.25mV. 6.25mv/LSB.

VOUT TRIM (22h)

The VOUT_TRIM command sets the value to compensate the system error between V_{REF} and VOSEN. The error used for the DC loop is (21h, bits[7:0] x 4 + VOUT_TRIM - VOUT_SENSE). VOUT_SENSE is the 10-bit ADC sampling result of VOSEN.

Command				VOUT	_TRIM									
Format				Unsigne	d binary									
Bit	7	7 6 5 4 3 2 1 0												
Access	R	R R R R/W R/W R/W												
Function	X X X X VOUT_TRIM													

	Bits	Bit Name	Description
	7:4	RESERVED	Not defined. Read-only.
Ī	3:0	VOUT_TRIM	1.5625mV/LSB.

TRANSFORMER_RATIO (25h)

The TRANSFORMER_RATIO command records the transformer ratio of the specific application.

Command		TRANSFORMER_RATIO														
Format		Unsigned binary														
Bit	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	V R/W R/W														
Function																

Bits	Bit Name	Description
15:4	RESERVED	Reserved. R/W bits are available, but do not change the device.
3:0	TRANSFORMER_RATIO	Records the transformer ratio.

Table 5 lists the values for 25h, bits[3:0], as well as their respective transformer ratios.

Table 5: Transformer Ratios

25h, Bits[3:0]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Transformer Ratio	-	1	1/2	1/3	1/4	1/5	1/6	1/7	1/8	1/9	1/10	1/11	1/12	1/13	1/14	1/15

WEIGHT_ZCD (29h)

The WEIGHT_ZCD command defines the positive and negative weights used when adjusting the frequency set by zero-current detection (ZCD) functionality. Assume to changes from INITIAL_TON (ns) to FINAL_TON (ns), and the dead time remains the same (DEAD_TIME (ns)). The adjusting time can be calculated with Equation (2):

$$TIME(ns) = \frac{256 \times 5}{WEIGHT_ABS} \times n \times (TON_INIT_D + DT_D + 2 + \frac{n-1}{2})(ns)$$
 (2)

Where all variables are unitless. The variables are defined below:

- TON_INIT_D = INITIAL_TON (ns) / 5ns 1
- TON_FIN_D = FINAL_TON (ns) / 5ns 1
- n = TON FIN D TON INIT D + 1
- DT = DEAD TIME (ns) / 5ns 1
- WEIGHT ABS is the absolute value of WEIGHTN ZCD or WEIGHTP ZCD

The time above does not include the 256 PWM periods during which t_{ON} stays within the t_{ON} hysteresis (0Bh, bits[10:8]) for t_{ON} latch (0Ch, bit[5]).

Command		WEIGHT_ZCD														
Format		Direct														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/														
Function	WEIGHTN_ZCD											WEI	GHTP_	ZCD		

Bits	Bit Name	Description
15:8	WEIGHTN_ZCD	When zero-current detection (ZCD) occurs in a valid ZCD time (0Bh), ton decreases by this value. Cannot be set to 0 or 0xFF.
7	RESERVED	Reserved. R/W bits are available, but do not change the device.
6:0	WEIGHTP_ZCD	When ZCD does not occur in a valid ZCD time (0Bh), ton increases by this value. Cannot be set to 0 or 0x01.

SR_PWM_SETA_PRIDRV (2Ah)

The SR_PWM_SETA_PRIDRV command controls the SR_PWM setting and sets the simulated primary driver chip delay. For more information, see the CTRL_PWM section on page 19.

Command		SR_PWM_SETA_PRIDRV													
Format		Unsigned binary													
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
Access	R/W	R/W													
Function	PWM_NEG_FIXED											PR	I_DRV	_DLY_	SIM

Bits	Bit Name	Description						
15:12	PWM_NEG_FIXED	If SR_FIXED_DEC_EN = 1 and SR_FIXED_EXT_EN = 0, SR_PWM shuts off before the PWMP pin of its own phase, and the change is (PWM_NEG_FIXED) x 5ns. If SR_FIXED_EXT_EN = 1 and SR_FIXED_DEC_EN = 0 or 1, SR_PWM shuts off after PWMP, and the change is (PWM_NEG_FIXED + 1) x 5ns.						
11:6	RESERVED	Reserved. R/W bits are available, but do not change the device.						
5	RM_PWMDEC_ REDUND	Digital internal use.						
4	PWM_EXT_DN_CFG	Digital internal use.						
3:0	PRI_DRV_DLY_SIM	Delays the internal PWMPs from the output PWMPs. The time length simulates the primary-drive chip delay. The delay time can be calculated with the following equation:						
		Delay time = (bits[3:0] + 1) x 5ns						

SS_SRNEG_SET (2Bh)

The SS_SRNEG_SET command sets the time length that determines when the SR_PWM pin turns off (before or after PWMP during soft start). This register works with 5Ah and 5Bh. For more information, see the CTRL_PWM section on page 19.

Command		SS_SRNEG_SET														
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	V R/W														
Function																

Bits	Bit Name	Description
15:12	SRNEG_SS_TONHH_ DEC	If $t_{ON} \ge TON_LVL_SS_HH$ during soft start, then turn off SR_PWM before PWMP by SRNEG_SS_TONHH_DEC x 5ns.

11:8	SRNEG_SS_TONH_ DEC	If TON_LVL_SS_HH > $t_{ON} \ge$ TON_LVL_SS_H, then turn off SR_PWM before PWMP by SRNEG_SS_TONH_DEC x 5ns.
7:4	SRNEG_SS_TONL_ DLY	If TON_LVL_SS_L > $t_{ON} \ge$ TON_LVL_SS_LL during soft start, then turn off SR_PWM after PWMP by (SRNEG_SS_TONL_DLY + 1) x 5ns.
3:0	SRNEG_SS_TONLL_ DLY	If to _N < TON_LVL_SS_LL, then turn off SR_PWM after PWMP by (SR_NEG_SS_TONLL_DLY + 1) x 5ns.

SR_PWM_SETB (2Ch)

The SR_PWM_SETB command controls the SR_PWM pins' settings. For more information, see the CTRL_PWM section on page 19.

Command							S	R_PWI	M_SET	В						
Format							Ĺ	Jnsigne	d binar	у						
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W														
Function					SR_PV	/M_NE	G_ADJ		SR_I	PWM_F	POS_D	ECH	SR_	PWM_	POS_D	ECL

Bits	Bit Name	Description
15:13	RESERVED	Reserved. R/W bits are available, but do not change the device
12:8	SR_PWM_NEG_ADJ	SR_PWM shuts off before or after PWMP. The time length between SR_PWM's negative edge and the other phase's PWMP positive edge is (SR_PWM_NEG_ADJ + 1) x 5ns.
7:4	SR_PWM_POS_DECH	When SR_POS_DEC_EN = 1 under conditions other than light load, SR_PWM turns on after PWMP by (SR_PWM_POS_DECH + 1) x 5ns (the MP2981's SKIP_EN pin is low).
3:0	SR_PWM_POS_DECL	When SR_POS_DEC_EN = 1 under light-load conditions, SR_PWM turns on after PWMP by (SR_PWM_POS_DECL + 1) x 5ns (the the MP2981's SKIP_EN pin is high).

MFR_SLOPE_SR (2Dh)

The MFR_SLOPE_SR command defines the capacitor's slope charge number and current.

Command							М	FR_SL	OPE_S	SR						
Format							l	Jnsigne	d binar	у						
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	Х	Х	Х	Χ	Χ	Х	Х					SL	OPE_C	URRE	NT	

Bits	Bit Name	Description
15:9	RESERVED	Not defined. Read-only.
8:6	SLOPE_CAP_SET	The parallel capacitor number is (8 - SLOPE_CAP_SET), and each capacitor is 3.7pF.
5:0	SLOPE_CURRENT	Slope charge current. 250nA/LSB.

MFR_SLOPE_BLK (2Eh)

The MFR_SLOPE_BLK command defines the slope discharge time.

Command							MI	FR_SL	OPE_B	LK						
Format							ι	Jnsigne	d binar	у						
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R R R/W R/W R/W R/W R/W R/W R/W R/W R/W														
Function	Χ	Χ		MF	R_SL	OPE_B	LK									

Bits	Bit Name	Description
15:14	RESERVED	Not defined. Read-only.
13:8	MFR_SLOPE_BLK	Discharge slope during dead time, excluding the first 5ns of dead time and the first (MFR_SLOPE_BLK + 1) x 5ns of the PWMP pulses.
7:0	RESERVED	Reserved. R/W bits are available, but do not change the device.

PRISETBLK_WEIGHT_SS (2Fh)

The PRISETBLK_WEIGHT_SS command sets the blanking time of the primary set loop (primary closed loop). It is a time length at the beginning of the PWMP period. During this time, t_{ON} does not adjust based on the set loop. This command also configures how quickly t_{ON} increases during soft start. There are two t_{ON} increasing stages: fixed frequency and decreasing frequency. The first-stage cost time (t_{SS1}) can be calculated with Equation (3):

$$t_{\text{SS1}} = \frac{(\text{TON_MIN} + \text{DEAD_TIME} + 1) \times 256 \times 5\text{ns}}{\text{WEIGHT_SS}} \times \left(\text{TON_MIN} - \text{TON_MIN_LIM}\right) \tag{3}$$

Where DEAD_TIME = 1Bh, bits[6:0]; TON_MIN_LIM = 1Fh, bits[13:8]; and WEIGHT_SS = 2Fh, bits[6:0]. The second-stage cost time (t_{SS2}) can be estimated with Equation (4):

$$t_{SS2} = \frac{u \times n + \frac{(n-1) \times n}{2} + (DEAD_TIME + 1) \times n}{WEIGHT_SS} \times 256 \times 5ns$$
 (4)

Where $u = TON_MIN = 1Ch$, bits[9:0]; $n = TON_NORMAL - TON_MIN$; and $TON_NORMAL = 1Eh$, bits[9:0].

Command							PRISE	TBLK_	WEIGI	HT_SS						
Format							Ĺ	Jnsigne	d binar	у						
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R R R/W R/W R/W R/W R/W R/W R/W R/W R/W														
Function	Χ	X X BLK_TIME														

Bits	Bit Name	Description
15:14	RESERVED	Not defined. Read-only.
13:8	BLK_TIME	Adjusts the blank PWMP t_{ON} (only primary closed loop) at the beginning of the PWMP period. 5ns/LSB.
7	RESERVED	Reserved. R/W bits are available, but do not change the device.
6:0	WEIGHT_SS	Accumulation step during soft start.

WEIGHT_2_1 (30h)

The WEIGHT_2_1 command configures the value at which ton increases in the primary closed loop when the set signal is received during the last two quarters of the remaining PWMP pulse, and BLK_TIME (2Fh) is disabled.

Command								WEIGH	HT_2_1							
Format							ι	Jnsigne	d binar	у						
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function				W	EIGHT	_2						W	EIGHT	_1		

MPC1100A-54-0000 Rev. 1.0 MonolithicPower.com **36**

Bits	Bit Name	Description
15	RESERVED	Reserved. R/W bits are available, but do not change the device.
14:8	WEIGHT_2	Value at which the primary closed loop ton increases when the set signal occurs during the third quarter of the remaining PWMP period (PWMP with BLK_TIME is disabled).
7	RESERVED	Reserved. R/W bits are available, but do not change the device.
6:0	WEIGHT_1	Value at which the primary closed loop ton increases when the set signal is received during the final quarter (not including the last 5ns) of the remaining PWMP period (PWMP with BLK_TIME is disabled).

WEIGHT 4 3 (31h)

The WEIGHT_4_3 command configures the value at which t_{ON} increases in the primary closed loop when the set signal is received on the first two quarters of the remaining PWMP pulse, not including BLK_TIME (2Fh).

Command								WEIGH	HT_4_3							
Format		Unsigned binary														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		WEIGHT_4 WEIGHT_3														

Bits	Bit Name	Description
15	RESERVED	Reserved. R/W bits are available, but do not change the device.
14:8	WEIGHT_4	Value at which the primary closed loop ton increases when the set signal is received during the first quarter of the remaining PWMP period (PWMP with BLK_TIME is disabled).
7	RESERVED	Reserved. R/W bits are available, but do not change the device.
6:0	WEIGHT_3	Value at which the primary closed loop ton increases when the set signal is received during the second quarter of the remaining PWMP period (PWMP with BLK_TIME is disabled).

WEIGHT_OCSPK_L_N (32h)

The WEIGHT_OCSPK_L_N command defines the ton decreasing weight of the primary closed loop and OCSPK_L.

Command							WEI	GHT_C	CSPK_	L_N						
Format								Dir	ect							
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		WEIGHT_OCSPK_L WEIGHT_N														

Bits	Bit Name	Description
15:8	WEIGHT_OCSPK_L	Value at which ton decreases when an over-current (OC) spike occurs on CS2 (OCSPK_L).
7:0	WEIGHT_N	Value at which the primary closed-loop t_{ON} decreases when no set pulses appear during the PWMP period while BLK_TIME is disabled.

MPC1100A-54-0000 Rev. 1.0 MonolithicPower.com **37**

WEIGHT_OCSPK_INC (33h)

The WEIGHT OCSPK INC command sets the ton recovering (increasing) value after an over-current (OC) spike on CS1 or CS2 (OCSPK_H or OCSPK_L, respectively) goes low.

Command							WEI	GHT_C	CSPK	INC						
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		WEIGHT_OCSPK_H_INC WEIGHT_OCSPK_L_INC														

Bits	Bit Name	Description
15	RESERVED	Reserved. R/W bits are available, but do not change the device.
14:8	WEIGHT_OCSPK_H_INC	Value at which t_{ON} recovers (increases) after an over-current (OC) spike on CS1 (OCSPK_H) goes low.
7	RESERVED	Reserved. R/W bits are available, but do not change the device.
6:0	WEIGHT_OCSPK_L_INC	Value at which ton recovers (increases) after an OC spike on CS2 (OCSPK_L) goes low.

MFR_VIN_DROP_SET (34h)

The MFR_VIN_DROP_SET command configures the two functions when V_{IN} drops.

Command							MFR	_VIN_	DROP_	SET						
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	Χ	X X X RESERVED VINL_VOUTH_DELTA VODROP_DAC														

Bits	Bit Name	Description
15:13	RESERVED	Not defined. Read-only.
12:8	RESERVED	Reserved. R/W bits are available, but do not change the device.
7:4	VINL_VOUTH_DELTA	When the MP2981's VINSEN drops below VOSEN - VINL_VOUTH_DELTA, the SR_PWM pins start skipping.
3:0	VODROP_DAC	When the MP2981's VINSEN exceeds VOSEN + VODROP_DAC, the SR_PWM pins start generating.

VIN_ON (35h)

The VIN_ON command defines the levels for V_{IN} to start working. After V_{IN} ramps up to VIN_ON, the MP2981 starts to count START_DELAY (PROTECT_DELAY must finish counting before START_DELAY) and then to generate PWMs. This level should be greater than VIN_OFF.

Command								VIN	_ON							
Format							ι	Jnsigne	d binar	у						
Bit	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	Χ															

Bits	Bit Name	Description
15:9	RESERVED	Not defined. Read-only.
8:0	VIN_ON	If READ_VIN ≤ VIN_ON and the power is off or READ_VIN < VIN_OFF at any moment, V _{IN} under-voltage lockout (UVLO) occurs. 0.25V/LSB.

VIN OFF (36h)

The VIN_OFF command defines the V_{IN} level when the device is on and V_{IN} starts working. This level should be below VIN_ON.

Command								VIN_	OFF							
Format		Unsigned binary														
Bit	15															
Access	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	Х	Х	Х	Χ	Χ	Х	Χ				V	IN_OF	F			

Bits	Bit Name	Description
15:9	RESERVED	Not defined. Read-only.
8:0	VIN_OFF	If READ_VIN ≤ VIN_ON and the power is off or READ_VIN < VIN_OFF at any time, V _{IN} under-voltage lockout (UVLO) occurs. 0.25V/LSB.

IOUT_CAL_GAIN (38h)

The IOUT_CAL_GAIN command helps calculate READ_IOUT (8Ch), bits[9:0] (0.25A/LSB). IOUT_CAL_GAIN can be calculated with Equation (5):

IOUT_CAL_GAIN =
$$k_{CS} \times R_{CS} \times \frac{1}{2} \times 3 \times 2^{14}$$
 (5)

Where k_{CS} is the DrMOS current-sense (CS) gain (e.g. if the CS gain is 5μ A/A, $k_{CS} = 5e - 6$) (in A/A), and R_{CS} is the resistor connected from CS1/CS2 to GND (in Ω).

Command		IOUT_CAL_GAIN									
Format		Unsigned binary									
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Access	R	R R R R R/W R/W R/W R/W R/W R/W R/W R/W									
Function	Χ	X X X X X X IOUT_CAL_GAIN									

Bits	Bit Name	Description
15:10	RESERVED	Not defined. Read-only.
9:0	IOUT_CAL_GAIN	These bits help calculate READ_IOUT.

IOUT_CAL_OFFSET (39h)

The IOUT_CAL_OFFSET command calculates READ_IOUT (8Ch), bits[9:0] (0.25A/LSB). It is in signed binary format and uses complements. READ_IOUT can be estimated with Equation (6):

$$READ_IOUT = \frac{IOUT_SENSE \times 205}{2 \times IOUT_CAL_GAIN} + IOUT_CAL_OFFSET$$
 (6)

Where IOUT_SENSE is the 10-bit ADC sampling result on the IMON pin.

Command		IOUT_CAL_OFFSET									
Format		Signed binary									
Bit	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Access	R	R R R R R R R R/W R/W									
Function	Χ	X X X X X X X X X X IOUT_CAL_OFFSET									

Bits	Bit Name	Description
15:6	RESERVED	Not defined. Read-only.

5:0	IOUT_CAL_OFFSET	Calculates READ_IOUT.
-----	-----------------	-----------------------

VIN_CAL_GAIN (3Ah)

The VIN_CAL_GAIN command calculates READ_VIN (88h), bits[9:0] (0.125V/LSB). VIN_CAL_GAIN can be calculated with Equation (7):

$$VIN_CAL_GAIN = GAIN \times 2^{14}$$
 (7)

Where GAIN is the V_{IN} divider ratio (e.g. if a 48V V_{IN} results in 1V on the MP2981's VINSEN pin with the resistor divider, then GAIN = 1/48). READ_VIN can be estimated with Equation (8):

$$READ_VIN = \frac{VIN_SENSE \times 205}{VIN_CAL_GAIN}$$
 (8)

Where VIN_SENSE is the 10-bit ADC sampling result on the VINSEN pin.

Command							١	/IN_CA	L_GAII	N						
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R R R R R R/W R/W R/W R/W R/W R/W R/W R/														
Function	Χ	(X X X X X VIN_CAL_GAIN														

Bits	Bit Name	Description
15:10	RESERVED	Not defined. Read-only.
9:0	VIN_CAL_GAIN	Calculates READ_VIN.

VOUT_CAL_GAIN (3Bh)

The VOUT_CAL_GAIN command helps calculate READ_VOUT (8Bh), bits[8:0] (62.5mV/LSB). VOUT_CAL_GAIN can be calculated with Equation (9):

$$VOUT_CAL_GAIN = GAIN \times 2^{11}$$
 (9)

Where GAIN is the V_{OUT} divider ratio (e.g. if 6V V_{OUT} results in 1V on the VOSEN pin with the resistor divider, then GAIN = 1/6).

READ_VOUT can then be calculated with Equation (10):

$$READ_VOUT = \frac{VOUT_SENSE \times 205}{4 \times VOUT_CAL_GAIN}$$
 (10)

Where VOUT SENSE is the 10-bit ADC sampling result of the VOSEN pin.

Command		VOUT_CAL_GAIN									
Format		Unsigned binary									
Bit	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Access	R	R R R R R R/W R/W R/W R/W R/W R/W R/W R/									
Function	Х	X X X X X VOUT_CAL_GAIN									

Bits	Bit Name	Description
15:10	RESERVED	Not defined. Read-only.
9:0	VOUT_CAL_GAIN	Helps calculated READ_VOUT.

MPC1100A-54-0000 Rev. 1.0 MonolithicPower.com **40**

VIN OV FLT LIM (40h)

The VIN OV FLT LIM command sets the V_{IN} over-voltage protection (OVP) fault limit. Compared to READ_VIN (88h), bits[9:1].

Command		VIN_OV_FLT_LIM										
Format		Unsigned binary										
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
Access	R	R R R R R R R/W R/W R/W R/W R/W R/W R/W										
Function	Х	X X X X X X X VIN_OV_FLT_LIM										

Bits	Bit Name	Description
15:9	RESERVED	Not defined. Read-only.
8:0	VIN_OV_FLT_LIM	V _{IN} over-voltage protection (OVP) limit. 0.25V/LSB.

TEMP_GAIN_OFFSET (42h)

The TEMP_GAIN_OFFSET command calculates READ_TEMP (8Dh), bits[7:0] (1°C/LSB). MFR_TEMP_GAIN is an unsigned binary, while MFR_TEMP_OFFSET is a signed binary that uses complement format. READ_TEMP is calculated from the TEMP pin, and reflects the DrMOS temperature (T (°C)). Assuming the TEMP pin voltage (V) = $k \times (T(°C) - a)$, READ TEMP can be estimated with Equation (11):

$$READ_TEMP = \frac{TEMP_PIN_SENSE \times MFR_TEMP_GAIN}{512} + MFR_TEMP_OFFSET (11)$$

Where TEMP_PIN_SENSE is the 10-bit ADC sampling result on the TEMP pin, and MFR_TEMP_GAIN and MFR TEMP OFFSET can be calculated with Equation (12) and Equation (13), respectively:

$$MFR_TEMP_GAIN = \frac{0.8}{k}$$
 (12)

$$MFR_TEMP_OFFSET = a$$
 (13)

Command							TEM	IP_GAI	N_OFF	SET						
Format		Unsigned binary, signed binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/														
Function		MFR_TEMP_GAIN MFR_TEMP_OFFSET														

Bits	Bit Name	Description
15:8	MFR_TEMP_GAIN	Proportional to the voltage vs. temperature (V-T) line gain. Unsigned binary.
7:0	MFR_TEMP_OFFSET	Proportional to the voltage value when T = 0°C. Signed binary.

DIETEMP GAIN OFFSET (43h)

The DIETEMP_GAIN_OFFSET command calculates READ_DIE_TEMP (8Eh), bits[7:0] (1°C/LSB). MFR_DIE_TEMP_GAIN is an unsigned binary, while MFR_DIE_TEMP_OFFSET is a signed binary that uses complement format. The MP2981 senses its die temperature on the chip (not the TEMP pin). READ DIE TEMP can be calculated with the sensed ADC results using Equation (14):

$$READ_DIE_TEMP = \frac{DIE_TEMP_SENSE \times GAIN}{512} + OFFSET$$
 (14)

MFR_DIE_TEMP_GAIN and MFR_DIE_TEMP can be estimated with Equation (15) and Equation (16), respectively:

$$MFR_DIE_TEMP_GAIN = \frac{0.8}{k}$$
 (15)

$$MFR_DIE_TEMP_OFFSET = a$$
 (16)

Assume the voltage (V) input to ADC = $k \times (T(^{\circ}C) - a)$ during positive mode (06h, bit[11] = 0), which is the default mode. Positive mode is the default V-T wave mode. The second mode is negative mode (06h, bit[11] = 1). In negative mode, READ_DIE_TEMP can be calculated with Equation (17):

$$READ_DIE_TEMP = -\frac{DIE_TEMP_SENSE \times (GAIN + 256)}{512} + OFFSET + 350$$
 (17)

Where DIE_TEMP_SENSE is the 10-bit ADC sampling result of the chip's sensed temperature, GAIN is short for MFR DIE TEMP GAIN, and OFFSET is short for MFR DIE TEMP OFFSET.

In VBE mode, MFR DIE TEMP GAIN and MFR DIE TEMP OFFSET can be estimated with Equation (18) and Equation (19), respectively:

$$MFR_DIE_TEMP_GAIN = -\frac{0.8}{k} - 256$$
 (18)

$$MFR_DIE_TEMP_OFFSET = a - 350$$
 (19)

Command		DIETEMP_GAIN_OFFSET											
Format		Unsigned binary, signed binary											
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
Access	R/W	W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/											
Function		MFR_DIE_TEMP_GAIN MFR_DIE_TEMP_OFFSET											

Bit	its	Bit Name	Description
15	5:8	DIE_TEMP_GAIN	Helps calculate READ_DIE_TEMP. Unsigned binary.
7:	:0	DIE_TEMP_OFFSET	Helps calculate READ_DIE_TEMP. Signed binary.

MFR USER PWD (44h)

The MFR USER PWD command is the configured user password for PMBus/I²C communication. Writeonly. All reads are 0.

Command		MFR_USER_PWD														
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	W	' W W W W W W W W W W W W W W														
Function																

Bits	Bit Name	Description
15:0	MFR_USER_PWD	Configures the user password for PMBus/I ² C communication.

42 MPC1100A-54-0000 Rev. 1.0 MonolithicPower.com

MFR MTP WP (45h)

The MFR_MTP_WP command provides MTP write protection. The MTP store command cannot be executed if this byte is not 8'h63.

Command		MFR_MTP_WP											
Format		Direct											
Bit	7	7 6 5 4 3 2 1 0											
Access	R/W	R/W R/W R/W R/W R/W R/W R/W											
Function	MFR_MTP_WP												

Bits	Bit Name	Description
7:0	MFR_MTP_WP	MTP write protection.

SKIPDRMOS_SR_EARLI (46h)

The SKIPDRMOS_SR_EARLI command allows the device to skip the DrMOS function under light-load conditions. It is related to registers 1Ah and 49h. This register also sets the time length at which SR_PWM turns on before PWMP.

Command		SKIPDRMOS_SR_EARLI											
Format		Unsigned binary											
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
Access	R/W	R/W											
Function		SR_POS_EARLIER SKIPSR_DELAY											

Bits	Bit Name	Description
15:13	RESERVED	Reserved. R/W bits are available, but do not change the device.
12:8	SR_POS_EARLIER	Determines how early SR_PWM turns on before PWMP. 5ns/LSB.
7	RESERVED	Reserved. R/W bits are available, but do not change the device.
6	SKIP_DRMOS_EN	Enables bypassing the DrMOS function (the SKIP_EN pin). 1'b1: Enabled 1'b0: Disabled
5:0	SKIPSR_DELAY_TIME	If SR_PWM is triggered by SKIP_PWM_EN or SKIP_DRMOS_EN before skipping under light-load conditions, the current must stay low for this set time. One whole ADC sample round/LSB, which is about 18µs/LSB if MFR_ADC_HOLD_TIME (05H) is set to 2µs.

MFR_IOUT_LEVEL (49h)

The MFR_IOUT_LEVEL command configures the TDC I_{OUT} values to skip the DrMOS function under light-load conditions (the MP2981's SKIP_EN pin, 46h, and 1Ah). If the load increases and READ_IOUT (8Ch) / 2 exceeds MFR_IOUT_LEVEL_H, then the SKIP_EN pin goes low and the DrMOS MOSFET starts working.

The other way to exit skip mode is for the CS1 pin to exceed CMP_CS1_EXITSKIP (1Ah). The only condition to enter DrMOS skip mode is that READ_IOUT (8Ch) / $2 \le MFR_IOUT_LEVEL_L$ for a configured time (46h).

Command		MFR_IOUT_LEVEL											
Format		Unsigned binary											
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
Access	R/W	/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R											
Function		MFR_IOUT_LEVEL_H MFR_IOUT_LEVEL_L											

MPC1100A-54-0000 - NON-ISOLATED, FIXED RATIO, 300W, DIGITAL DC/DC MODULE

NOT RECOMMENDED FOR NEW DESIGNS, REFER TO MPC1100C-54-0002

Bits	Bit Name	Description
15:8	MFR_IOUT_LEVEL_H	Sets the TDC I _{OUT} value to exit DrMOS skip mode.
7:0	MFR_IOUT_LEVEL_L	Sets the TDC I _{OUT} value to enter DrMOS skip mode.

MFR_VCAL_I_MAX (4Bh)

The MFR_VCAL_I_MAX command defines the integration factor and the maximum DC loop limit.

Command		MFR_VCAL_I_MAX									
Format		Unsigned binary									
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Access	R/W	W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/									
Function		MFR_VCAL_I MFR_VO_CMPS_MAX									

Bits	Bit Name	Description
15:8	MFR_VCAL_I	The integration factor of the DC loop.
7:0	MFR_VO_CMPS_MAX	The maximum limit of the value input into the VO_COMP DAC.

DC_TRIM (4Ch)

The DC_TRIM command sets the initial value of the VO_COMP DAC. The initial VO_COMP is DC_TRIM x 8. When the DC loop is enabled, VO_COMP = DC_TRIM x 8 - (DC loop result). If the DC loop is disabled, the data input to the VO_COMP DAC keeps the value before disabling. The DAC output is divided by 2, then added to VOSEN. The sum signal is one input of the primary closed-loop comparator.

Command		DC_TRIM											
Format		Direct											
Bit	7	7 6 5 4 3 2 1 0											
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Function				DC_TRIM									

Bits	Bit Name	Description
7:5	RESERVED	Reserved. R/W bits are available, but do not change the device.
4:0	DC_TRIM	DC_TRIM x 8 is the initial value input into the VO_COMP DAC.

MPS_CODE (50h)

The MPS_CODE command is written with a code that represents MPS.

Command		MPS_CODE														
Format		Direct														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R/W	N R/W														
Function																

Bits	Bit Name	Description
15:0	MPS_CODE	This code represents MPS.

PRODUCT CODE (51h)

The PRODUCT CODE command is written with "2981" (hex code), and represents the MP2981 chip.

Command		PRODUCT_CODE														
Format		Direct														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	V R/W														
Function																

Bits	Bit Name	Description
15:0	PRODUCT_CODE	This code represents the MP2981 chip. It is 2981 (hex radix).

CONFIG_ID (52h)

The CONFIG_ID command should be written with the specific application programming code.

Command		CONFIG_ID										
Format		Direct										
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
Access	R/W	N R/W										
Function												

Bits	Bit Name	Description
15:0	CONFIG_ID	Write with a specific application programming code.

CONFIG_REV (53h)

The CONFIG_REV command should be written with a version of the specific application programming code or complement programming code.

Command		CONFIG_REV														
Format		Direct														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	V R/W														
Function																

Bits	Bit Name	Description
15:0	CONFIG_REV	Write with a version of a specific application programming code or complement programming code.

CALVO_LOW_TON_SS_L (5Ah)

The CALVO_LOW_TON_SS_L command defines the upper limit of Vout to enable the two stages (TONLL and TONL) of the SR_PWM pins turning off after the PWMPs during soft start. If Vout > CALVOUT LOW LVL x 0.125V, TONLL and TONL are invalid. It also sets the two ton boundaries of these two stages. TON_LVL_SS_L must be greater than or equal to TON_LVL_SS_LL.

Command		CALVO_LOW_TON_SS_L														
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	V R/W														
Function		CALVOUT_LOW_LVL						Т	ON_LV	L_SS_	L		T	ON_LV	L_SS_	LL

Bits	Bit Name	Description
15:10	CALVOUT_LOW_LVL	If READ_VOUT / 2 (8Bh) > CALVOUT_LOW_LVL, then the TONLL and TONL stages during soft start can be disabled by setting CALVOUT_LOW_LMT_TONL (in 0Fh) high. 125mv/LSB.
9:4	TON_LVL_SS_L	If TON_LVL_SS_L > $t_{ON} \ge$ TON_LVL_SS_LL during soft start, the SR_PWM pins turn off after the PWMP pins by (SRNEG_SS_TONL_DLY + 1) x 5ns. Related to 2Bh. 5ns/LSB.
3:0	TON_LVL_SS_LL	If t_{ON} < TON_LVL_SS_LL during soft start, the SR_PWM pins turn off after the PWMP pins by (SRNEG_SS_TONLL_DLY + 1) x 5ns. Related to 2Bh. 5ns/LSB.

TON_SS_H (5Bh)

The TON_SS_H command sets the two ton boundaries that turn the SR_PWM pins off before the PWMP pins during soft start. TON_LVL_SS_HH must be greater than or equal to TON_LVL_SS_H.

Command		TON_SS_H														
Format		Unsigned binary														
Bit	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R/W R/W														
Function	Χ										TO	ON_LVI	L_SS_F	ΗН		

Bits	Bit Name	Description
15	RESERVED	Not defined. Read-only.
14:8	TON_LVL_SS_H	If TON_LVL_SS_HH > $t_{ON} \ge$ TON_LVL_SS_H during soft start, then the SR_PWM pins turn off before the PWMP pins by (SRNEG_SS_TONH_DEC x 5ns). Related to 2Bh. 5ns/LSB.
7:0	TON_LVL_SS_HH	If $t_{ON} \ge TON_LVL_SS_HH$ during soft start, the SR_PWM pins turn off before the PWMP pins by (SRNEG_SS_TONHH_DEC x 5ns). Related to 2Bh. 5ns/LSB.

POWER_GOOD_ON (5Eh)

The POWER_GOOD_ON command defines a VID level close to the VID target (21h, bits[7:0]). This means that VID ramping up is almost completed, and the PG on delay starts to use VID (instead of t_{ON}) as the PG reference (06h, bit[2]).

Command		POWER_GOOD_ON														
Format		Direct														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	Х	Х	Х	Х	Х	Х	Х	Х			PO	WER_C	GOOD	ON		

Bits	Bit Name	Description
15:8	RESERVED	Not defined. Read-only.
7:0	POWER_GOOD_ON	VID level that means VID ramping up is almost done. Must be set below or equal to the VID target (21h, bits[7:0]). 6.25mV/LSB.

POWER GOOD OFF (5Fh)

If VID is below or equal to this register and VID is selected as the PG reference (06h, bit[2]), then PG goes low.

Command							POV	VER_G	GOOD_	OFF						
Format								Dir	ect							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R	R	R R R R/W R/W R/W R/W R/W R/W					R/W	R/W					
Function	Χ	Χ	Χ	Х	X X X X POWER_GOOD_OFF											
Bits	Bit N	ame			Desc	ription										
15:8	RESE	RVED			Not defined. Read-only.											
7:0	POW	ER_GC	OOD_O	FF		Determines the VID level of PG off if VID is selected as the PG reference. Must be set below POWER_GOOD_ON (5Eh), bits[7:0]. 6.25mV/LSB.										

PROTECT_DELAY (60h)

The PROTECT DELAY sets the delay time after a shutdown occurs. After a shutdown protection that does not include an over-current (OC) spike (e.g. Phase OC, OCSPK_H, and OCSPK_L) occurs, the device starts counting PROTECT_DELAY. After this delay, the chip starts to count START_DELAY (63h), and then generates PWMs and ramps VID up again.

If the device has been configured to hiccup or retry mode, then the restart times are not completed (VOUT_OVP_MAX, OVP_VID, UVP_VID, UVP_MIN, OCP_TDC, or OCP_SPIKE), and are reset by VIN UVLO.

Command		PROTECT_DELAY										
Format		Direct										
Bit	7	6	5	4	3	2	1	0				
Access	R	R/W	R/W R/W R/W R/W R/W R/W									
Function	Х		PROTECT_DELAY									

	Bits	Bit Name	Description
ſ	7	RESERVED	Not defined. Read-only.
	6:0	PROTECT_DELAY	Sets the delay between a protection shutdown and when the device restarts. 100µs/LSB.

PWRGD_DELAY (62h)

The PWRGD_DELAY command sets the delay period between the end of PG reference (ton increasing to TON_NORMAL (1Eh) or VID ramping up to POWER_GOOD_ON (5Eh)) ramping to when the PG pin turns on.

Command		PWRGD_DELAY									
Format		Unsigned binary									
Bit	7	7 6 5 4 3 2 1 0									
Access	R/W	R/W R/W R/W R/W R/W R/W									
Function			PWRGD_DELAY								

Bits	Bit Name	Description
7	PWRGD_DELAY_SEL	1'b1: 20kHz 1'b0: 50kHz

6:0	PWRGD DELAY	After VID reaches POWER_GOOD_ON (5Eh) or ton reaches TON_NORMAL (1Eh), this delay time starts counting. After this delay finishes, PG goes high.
0.0	FWRGD_DELAT	If 62h[7] = 1, the PWRGD_DELAY time = [6:0] x 50µs If 62h[7] = 0, the PWRGD_DELAY time = [6:0] x 20µs

START_DELAY (63h)

The START_DELAY command sets the time length for which the EN pin must stay high during start-up, after the MTP finishes restoring, and before VID starts slewing up and PWM switches.

Command		START_DELAY														
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	V R/W														
Function																

Bits	Bit Name	Description
15:0	START_DELAY	Determines if the device requires a continuously high EN pin during start-up. The resolution is determined by MFR_ONOFFDLY_CLK_1L0S (06h, T). The time length can be calculated with the following equation:
		Length = 256 x T x START_DELAY[15:8] + T x START_DELAY[7:0]

OFF_DELAY (64h)

The OFF DELAY command sets the delay time after the EN pin turns off or the PMBus/I2C sends an OFF command. This is during normal operation, and before shutting down VID, PG, and the PWM pins.

Command		OFF_DELAY														
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	N R/W														
Function																

Bits	Bit Name	Description
15:0	OFF_DELAY	Determines the part's delay before shutting down. The resolution is determined by MFR_ONOFFDLY_CLK_1L0S (06h, T). The delay can be calculated with the following equation:
		Delay = 256 x T x OFF_DELAY[15:8] + T x OFF_DELAY, bits[7:0]

MFR_OTP_SET (65h)

The MFR_OTP_SET command controls the TEMP pin's parameters if over-temperature protection (OTP) occurs.

Command					MFR_OTP_SET												
Format		Unsigned binary															
Bit	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0															
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Function		MFR_OTP_HYS MFR_OTP_LIMIT															

Bits	Bit Name	Description
15	MFR_OTP_LATCH	1'b1: Latch-off mode 1'b0: Hiccup mode
14:8	MFR_OTP_HYS	The TEMP pin's over-temperature (OT) hysteresis limit. When READ_TEMP (8Dh) ≤ (MFR_OTP_LIMIT - MFR_OTP_HYS), the OT comparator goes low. 1°C/LSB.

48 © 2022 MPS. All Rights Reserved.

7:0	MFR_OTP_LIMIT	TEMP pin over-temperature (OT) limit. 1°C/LSB.
-----	---------------	--

MFR_DIE_OTP_SET (66h)

The MFR_DIE_OTP_SET command controls the die temperature's parameters if over-temperature protection (OTP) occurs.

Command							MFR_DIE_OTP_SET												
Format		Unsigned binary																	
Bit	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Function		MFR_DIE_OTP_HYS MFR_DIE_OTP_LIMIT																	

Bits	Bit Name	Description
15	MFR_DIE_OTP_LATCH	1'b1: Latch-off mode 1'b0: Hiccup mode
14:8	MFR_DIE_OTP_HYS	Hysteresis of the die temperature's over-temperature (OT) limit. When READ_TEMP (8Dh) ≤ (MFR_DIE_OTP_LIMIT - MFR_DIE_OTP_HYS), the OT comparator goes low. 1°C/LSB.
7:0	MFR_DIE_OTP_LIMIT	Die temperature over-temperature (OT) limit. 1°C/LSB.

PMBUS/I²C_ADDR_SET (67h)

The PMBUS/I2C_ADDR_SET command configures the 7-bit PMBus/I2C slave address (the chip's PMBus/I2C address).

Command				PMBUS/I ² C	_ADDR_SET										
Format		Unsigned binary													
Bit	7	7 6 5 4 3 2 1 0													
Access	R/W	R/W R/W R/W R/W R/W R/W R/W													
Function															

Bits	Bit Name	Description
7:0	PMBUS/I ² C_ADDR_SET	Final PMBus/1 ² C address = 67h, bits[6:4]. If bit[7] = 1, then the final PMBus/1 ² C address bits[3:0] comes from sampling the ADDRP pin. If bit[7] = 0, then the final PMBus/1 ² C address [6:0] = 67h, bits[6:0].

MFR_PROTECT_CFG (68h)

The MFR_PROTECT_CFG command controls certain device protections.

Command		MFR_PROTECT_CFG														
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function																

Bits	Bit Name	Description
15	UVLO_STARTUP_MTP_EN	1'b1: Only store V _{IN} under-voltage lockout (UVLO) conditions that occur when power is being delivered to the MTP 1'b0: Store all V _{IN} UVLO occurrences in the MTP
14:12	RESERVED	Reserved. R/W bits are available, but do not change the device.
		Selects the trigger mode for DrMOS over-current protection (OCP).
11	DrMOS_OC_LATCH	1'b1: Latch-off mode 1'b0: Hiccup mode

		Enables DrMOS OCP.
10	DrMOS_OC_EN	1'b1: Enabled 1'b0: Disabled
		Selects the VOUT_OVP_MAX protection mode.
9	VOUT_OVP_MAX_LATCH	1'b1: Latch-off mode 1'b0: Hiccup mode
		Enables VOUT_OVP_MAX protection.
8	VOUT_OVP_MAX_EN	1'b1: Enabled 1'b0: Disabled
		Enables DIE_TEMP protection.
7	DIE_TEMP_PRO_EN	1'b1: Disable DIE_TEMP protection 1'b0: Enable DIE_TEMP protection
6	TEMP_PRO_EN	1'b1: Disable over-temperature protection (OTP) from the TEMP pin (not including DrMOS OC or DIE_TEMP) 1'b0: Enable OTP from the TEMP pin
	MED VIN OVE LATOU	Determines how the device responds when a V_{IN} protection is enabled (RST_VIN_PRO = 0).
5	MFR_VIN_OVP_LATCH	1'b1: Latch-off mode 1'b0: Hiccup mode
4	RST_VIN_PRO	1'b1: Disable V _{IN} protection, including V _{IN} UVLO and V _{IN} over-voltage protection (OVP) 1'b0: Enable V _{IN} protection, including V _{IN} UVLO and V _{IN} OVP
3	UVLO_STARTUP_STATUS _EN	1'b1: Only store V _{IN} UVLO occurrences while power is delivered to STATUS_WORD 1'b0: Store all V _{IN} UVLO occurrences to STATUS_WORD.
2	DOT CTATUS EN	Enables resetting STATUS_XX during a restart, after the EN pin is off, and when operation is off.
2	RST_STATUS_EN	1'b1: Reset STATUS_XX during a restart 1'b0: Do not reset STATUS_XX during a restart
1	SS_EXT_CLK_SEL	Select the clock counting the 4-clock delay after ton reaches TON_NORMAL, before OVP_VID, UVP_VID, and UVP_MIN can be enabled.
1	OO_LAT_OLK_OLL	1'b1: 20kHz 1'b0: 50kHz
		1'b1: Disable all protection features 1'b0: Enable all protection features
	DISABLE ALL DDO	There are two protections that cannot be controlled by this bit:
0	DISABLE_ALL_PRO	 PWM toN change during over-current (OC) spikes on the CS1 or CS2 pins (OCSPK_H and OCSPK_L, respectively) Counting of OC spikes on CS1 (OCSPK_H) before the device shuts down

OVP_UVP_VID_SET (69h)

The OVP_UVP_VID_SET command controls VOUT_OVP_VID and UVP_VID protection. Their levels are defined in 19h.

Command		OVP_UVP_VID_SET									
Format		Unsigned binary									
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
Access	R/W	R/W									
Function		OVP_VID_DELAYTIME UVP_VID_DELAYTIME									

Bits	Bit Name	Description
15:14	OVP_VID_MODE	2'b00: No action 2'b01: Latch-off mode 2'b10: Hiccup mode 2'b11: Retry 3 times or 6 times based on OVP_VID_RETRY_TIMES
13	OVP_VID_RETRY_TIMES	1'b1: Retry 3 times 1'b1: Retry 6 times, when MFR_OVP_SET_MODE is 11b
12:8	OVP_VID_DELAYTIME	If V_{OUT} stays high for a set time, V_{OUT} over-voltage protection (OVP) is triggered. 200ns/LSB.
7:6	UVP_VID_MODE	2'b00: No action 2'b01: Latch-off mode 2'b10: Hiccup mode 2'b11: Retry 6 times
5:0	UVP_VID_DELAYTIME	If V_{OUT} stays low for the set time, V_{OUT} under-voltage protection (UVP) is triggered. 20µs/LSB.

OCP_TDC_SET (6Ah)

The OCP_TDC_SET command controls TDC over-current protection (OCP).

Command		OCP_TDC_SET														
Format		Unsigned binary														
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		OCP_TDC_DELAYTIME OCP_TDC_LEVEL														

Bits	Bit Name	Description
15:14	OCP_TDC_MODE	2'b00: No action 2'b01: Latch-off mode 2'b10: Hiccup mode 2'b11: Retry 6 times
13:8	OCP_TDC_DELAYTIME	If the TDC current stays high for this set time, over-current protection (OCP) is triggered. 100µs/LSB.
7:0	OCP_TDC_LEVEL	1A/LSB.

OCP_SPIKE_TIMES_SET (6Bh)

The OCP_SPIKE_TIMES_SET command controls the over-current (OC) spike time, which can shut down the chip.

Command		OCP_SPIKE_TIMES_SET										
Format		Unsigned binary										
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
Access	R	R										
Function	Χ	X X OCP_SPIKE_RANGE OCP_SPIKE_TIMES										

Bits	Bit Name	Description
15:14	RESERVED	Not defined. Read-only.
13	DIS_OCP_SPIKE_SS	1'b1: Disable the OCP_SPIKE_TIMES protection during soft start 1'b0: Enable the OCP_SPIKE_TIMES protection during soft start
12:8	OCP_SPIKE_RANGE	The time length in which to count over-current (OC) spikes on CS1 (OCSPK_H), and the time length before starting one OCSPK_H pulse. 1 PWMP period/LSB. The set time can be calculated with the following equation: Time length = (PWM1 toN + PWM2 toN + 2 dead time) x [12:8]

7:6	OCP_SPIKE_MODE	2'b00: No action 2'b01: Latch-off mode 2'b10: Hiccup mode 2'b11: Retry 6 times
5:0	OCP_SPIKE_TIMES	If the pulse time of OC spikes on CS1 (OCSPK_H) (both PWM1 and PWM2) exceeds OCP_SPIKE_TIMES during OCP_SPIKE_RANGE, a protection is triggered. If the OCSPK_H (both PWM1 and PWM2) pulse time is below OCP_SPIKE_TIMES during OCP_SPIKE_RANGE, then OCSPK_H pulses are recounted from 0. The next OC pulse and the detection time window (OCP_SPIKE_RANGE) also restart.

OCP_SPIKE_LEVEL (6Ch)

The OCP_SPIKE_LEVEL command sets the higher and lower OCP_SPIKE levels. Both levels are compared with the CS1 and CS2 pins.

Command							OC	P_SPII	KE_LE\	√EL						
Format		Unsigned binary														
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function		HIGHER_SPIKE_LVL LOWER_SPIKE_LVL														

Bits	Bit Name	Description
15:8	HIGHER_SPIKE_LVL	Digital value of the higher OCP_SPIKE DAC. 2V range, 8-bit DAC. The DAC output is HIGHER_SPIKE_LVL x 2V / 256.
7:0	LOWER_SPIKE_LVL	Digital value of the lower OCP_SPIKE DAC. 2V range, 8-bit DAC. The DAC output is LOWER_SPIKE_LVL x 2V / 256.

UVP_MIN_SET (6Dh)

The UVP_MIN_SET command controls the V_{OUT} UVP_MIN protection.

Command		UVP_MIN_SET									
Format		Unsigned binary									
Bit	7	7 6 5 4 3 2 1 0									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Function	UVP_MI	UVP_MIN_MODE UVP_MIN_DELAY									

Bits	Bit Name	Description
7:6	UVP_MIN_MODE	2'b00: No action 2'b01: Latch-off mode 2'b10: Hiccup mode 2'b11: Retry 6 times
5:0	UVP_MIN_DELAY	If V _{OUT} stays low for this time length, the protection is triggered. 0.4µs/LSB.

STATUS_WORD (79h)

The STATUS_WORD command records general protections and the real-time on/off state. It is reset by an EN or OPERATION restarting if the RST_STATUS_EN bit (68h), bit[2] is high, by sending the CLEAR_FAULTS command (03h in Page 0, Page 1, or Page 3), or by cycling the power on VCC3V3.

Command		STATUS_WORD														
Format		Unsigned binary														
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R R R R R R R R R R R R														
Function																

MPC1100A-54-0000 Rev. 1.0 MonolithicPower.com **52**

Bits	Bit Name	Description						
15	VOUT OVP or UVP	VOUT_OVP_MAX, OVP_VID, UVP_VID, and UVP_MIN fault indicator. If output over-voltage protection (OVP) or under-voltage protection (UVP) occurs, this bit is set and latched. The specific protection is determined by STATUS_VOUT (7Ah).						
		1'b0: No V_{OUT} over-voltage (OV) or under-voltage (UV) fault has occurred 1'b1: A V_{OUT} OV or UV fault has occurred						
14	OCP	OCP_TDC or OCP_SPIKE_TIMES fault indicator. If either of these I _{OUT} protections occur, or an UV fault occurs at the beginning of OCP_TDC, this bit is set and latched. The specific protection can be viewed by STATUS_IOUT (7Bh).						
		1'b0: No I _{OUT} over-current (OC) fault has occurred 1'b1: An I _{OUT} OC fault has occurred						
13	VIN_UVLO_FLAG	V_{IN} under-voltage lockout (UVLO) protection indicator. If READ_VIN \leq VIN_ON while the device is off, or READ_VIN $<$ VIN_OFF at any time except during the reset all protection stages, then this bit is pulled high.						
		V _{IN} OVP fault indicator. If input OVP occurs, this bit is set and latched.						
12	VIN_OVP	1'b0: No V _{IN} OV fault has occurred 1'b1: A V _{IN} OV fault has occurred						
11	PG	PG pin state indicator. PG is set high after PWRGD_DELAY. When any protection or fault occurs during normal operation (power out state), PG is pulled down.						
10	RESERVED	Reserved. Reads are always 0.						
9	DrMOS_OCP	DrMOS over-current protection (OCP) fault indicator. If the TEMP pin reaches VCC3V3 (which means DrMOS OCP fault has occurred), this bit is set and latched. Specific protections can be viewed by PROTECT_SIG_GRP (7Ch).						
		1'b0: No DrMOS OC fault has occurred 1'b1: A DrMOS OC fault has occurred						
8:7	RESERVED	Reserved. Reads are always 0.						
		Chip working state indicator.						
6	EN_SS	1'b1: The chip is not outputting PWMs or V_{REF} , and the state is off 1'b0: The state is on, and PWMs are switching						
5	OVP_MAX/OVP_VID_ POS	V _{OUT} OV positive edge fault indicator. If output OVP_MAX or VID positive edge protection occurs, this bit is set and latched. Unlike STATUS_VOUT (7Ah), this bit can be cleared by a CLEAR_FAULTS (03h) command when the protection signal stays high.						
		1'b0: No V _{OUT} OV positive edge fault has occurred 1'b1: A V _{OUT} OV positive edge fault has occurred						
4	OCP_TDC_POS	I _{OUT} OC positive-edge fault indicator. If output OC positive-edge protection occurs, this bit is set and latched. Unlike STATUS_IOUT (7Bh), this bit can be cleared by CLEAR_FAULTS (03h) when the protection signal stays high.						
		1'b0: No I _{OUT} OC positive edge fault has occurred 1'b1: An I _{OUT} OC positive edge fault has occurred						
3	UVP_VID or UVP_MIN_POS	Vout UV positive edge fault indicator. If output UV VID or MIN positive-edge protection occurs, this bit is set and latched. Unlike STATUS_VOUT (7Ah), this bit can be cleared by a CLEAR_FAULTS (03h) command when the protection signal stays high.						
		1'b0: No V _{OUT} UV positive edge fault has occurred 1'b1: V _{OUT} UV positive edge fault has occurred						

2	TEMP_OTP or DIE_OTP	Over-temperature protection (OTP) positive edge fault indicator. If OTP from the TEMP pin sampling or the 2981 internal DIE_TEMP sensor fault occurs, this bit is set and latched. Specific protections can be viewed by STATUS_TEMP (7Dh). 1'b0: No over-temperature (OT) fault has occurred 1'b1: An OT fault has occurred
1	STATUS_CML_ NONZERO	CML positive edge fault indicator. If a CML fault occurs, this bit is set and latched. Specific protections can be viewed by STATUS_CML (7Ch). 1'b0: No CML fault has occurred 1'b1: CML fault has occurred
0	RESERVED	Reserved. Unused. Reads are always 0.

STATUS_VOUT (7Ah)

The STATUS_VOUT command records the V_{OUT} protection status. It can be reset by an EN or OPERATION restart if RST_STATUS_EN bit (68h), bit[2] is high, by sending a CLEAR_FAULTS command (03h in Page 0, Page 1, or Page 3), or by cycling the power on VCC3C3.

Command		STATUS_VOUT										
Format		Unsigned binary										
Bit	7	7 6 5 4 3 2 1 0										
Access	R	R R R R R R										
Function												

Bits	Bit Name	Description
7	OVP MAY	$\ensuremath{\text{V}_{\text{OUT}}}$ OVP_MAX fault indicator. If $\ensuremath{\text{V}_{\text{OUT}}}$ exceeds VOUT_MAX, this bit is set and latched.
,	OVP_MAX	1'b0: No V _{OUT} OVP_MAX fault has occurred 1'b1: A V _{OUT} OVP_MAX fault has occurred
6	OVP VID	V_{OUT} OVP_VID fault indicator. If V_{OUT} exceeds OVP_VID for a set time, this bit is set and latched.
0	OVF_VID	1'b0: No V _{OUT} OVP_VID fault has occurred 1'b1: A V _{OUT} OVP_VID fault has occurred
5	UVP_VID	V_{OUT} UVP_VID fault indicator. If V_{OUT} drops below UVP_VID for a set time, this bit is set and latched.
3		1'b0: No V _{OUT} OVP_MAX fault has occurred 1'b1: A V _{OUT} OVP_MAX fault has occurred
4	UVP MIN	$\mbox{V}_{\mbox{\scriptsize OUT}}$ OVP_MAX fault indicator. If $\mbox{V}_{\mbox{\scriptsize OUT}}$ drops below UVP_MIN, this bit is set and latched.
4	OVI _IVIIIV	1'b0: No V _{OUT} OVP_MAX fault has occurred 1'b1: A V _{OUT} OVP_MAX fault has occurred
3:0	RESERVED	Reserved. Reads are always 0.

STATUS_IOUT (7Bh)

The STATUS_IOUT command records the I_{OUT} protection status. It can be reset by an EN or OPERATION restart if RST_STATUS_EN (68h), bit[2] is high, by sending a CLEAR_FAULTS command (03h on Page 0, Page 1, or Page 3), or by cycling the power on VCC3V3.

Command	STATUS_IOUT										
Format		Unsigned binary									
Bit	7	7 6 5 4 3 2 1 0									
Access	R	R R R R R R									
Function											

MPC1100A-54-0000 Rev. 1.0 MonolithicPower.com **54**

Bits	Bit Name	Description
7	OCB TDC	Normal I _{OUT} over-current protection (OCP) TDC fault indicator. If the TDC remains high for longer than the set time (6Ah), this bit is set and latched.
7	OCP_TDC	1'b0: No OCP TDC fault has occurred 1'b1: An OCP TDC fault has occurred
6	6 OCP_TDC_UV	Indicates an under-voltage (UV) fault caused by an I _{OUT} OCP TDC fault. If the UV comparator output is effective when TDC OCP occurs (after the delay), this bit is set and latched.
		1'b0: No OCP TDC/UV fault has occurred 1'b1: An OCP TDC/UV fault has occurred
5	OCP_SPIKE_TIMES	Indicates a UV fault caused by an I _{OUT} OCP TDC fault. If the current-sense (CS) peak exceeds the OC SPIKE H level and the counting pulse number exceeds the set number (6Bh, bits[5:0]) in the configured range (6Bh, bits[12:8]), this bit is set and latched.
		1'b0: No OCP TDC/UV fault has occurred 1'b1: An OCP TDC/UV fault has occurred
4:0	RESERVED	Reserved. Reads are always 0.

PROTECT_SIG_GRP (7Ch)

The PROTECT_SIG_GRP command records all protections that can result during shutdown. This register can be stored in the MTP.

Command		PROTECT_SIG_GRP														
Format		Unsigned binary														
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R R R R R R R R R R R R														
Function																

Bits	Bit Name	Description			
15:12	RESERVED	Reserved. Reads are always 0.			
11	DRMOS_OCP	DrMOS over-current protection (OCP) indicator. If the TEMP pin voltage exceeds 1.8V, a DrMOS OCP fault occurs. DRMOS_OCP protection is triggered, and this bit is set and latched. When an over-current (OC) condition occurs, DrMOS sets its TEMP pin to VCC.			
		1'b0: No DrMOS OCP has occurred 1'b1: DrMOS OCP has occurred			
10	RESERVED	Reserved. Reads are always 0.			
9	OCB TDC	I_{OUT} TDC OCP indicator. If I_{OUT} TDC OCP occurs and triggers TDC OCP protection this bit is set and latched.			
9	OCP_TDC	1'b0: No TDC OCP has occurred 1'b1: TDC OCP has occurred			
8	OCD SDIKE TIMES	OCP_SPIKE_TIMES protection indicator. If an OCP_SPIKE_TIMES fault occurs and triggers a protection, this bit is set and latched.			
0	OCP_SPIKE_TIMES	1'b0: No OCP_SPIKE_TIMES protection has not occurred 1'b1: A OCP_SPIKE_TIMES protection has occurred			
7	VIN OVP	V_{IN} over-voltage protection (OVP) indicator. If V_{IN} OVP is triggered, this bit is set and latched.			
	VIIV_OVF	1'b0: No V _{IN} OVP has occurred 1'b1: V _{IN} OVP has occurred			

6	VIN_UVLO	V _{IN} under-voltage lockout (UVLO) indicator. If V _{IN} UVLO occurs when delivering power or if UVLO_STARTUP_MTP_EN (68h), bit[15] is enabled, then this bit is set and latched.
		1'b0: No V _{IN} UVLO fault has occurred 1'b1: A V _{IN} UVLO fault has occurred
5	ОТР	Over-temperature protection (OTP) from sampling the TEMP pin indicator. If this fault occurs and triggers the protection, this bit is set and latched.
5	OTP	1'b0: No OTP has occurred 1'b1: OTP has occurred
4	DIE OTD	Die OTP protection indicator. If the MP2981's die temperature exceeds its overtemperature (OT) limit and triggers the protection, this bit is set and latched.
4	DIE_OTP	1'b0: No die OTP has occurred 1'b1: Die OTP has occurred
2	3 OVP_MAX	V_{OUT} OVP_MAX protection indicator. If a V_{OUT} OVP max fault occurs and triggers the protection, this bit is set and latched.
3		1'b0: No Vout OVP_MAX protection has occurred 1'b1: A Vout OV_MAX protection has occurred
2	OVP VID	V_{OUT} OVP_VID protection indicator. If V_{OUT} OVP VID fault occurs and triggers the protection, this bit is set and latched.
2	OVP_VID	1'b0: No Vout OVP_MAX protection has occurred 1'b1: A Vout OV_MAX protection has occurred
1	UVP_VID	V_{OUT} UVP_VID protection indicator. If a V_{OUT} UVP_VID fault occurs and triggers the protection, this bit is set and latched.
	OVF_VID	1'b0: No Vout UVP_VID protection has occurred 1'b1: A Vout UVP_VID protection has occurred
0	LIV/D MINI	V _{OUT} UVP_MIN protection indicator. If a VOUT UVP_MIN fault occurs and triggers the protection, this bit is set and latched.
0	UVP_MIN	1'b0: No V _{OUT} UVP_MIN protection has occurred 1'b1: A V _{OUT} UVP_MIN protection has occurred
		-

STATUS_TEMP (7Dh)

The STATUS_TEMP command records the protection statuses related to the TEMP pin. It can be reset by EN or OPERATION restarting if RST_STATUS_EN bit (68h, bit[2]) is high, by sending a CLEAR_FAULTS command (03h on Page 0, Page 1, or Page 3), or by cycling the power on VCC3V3.

Command	STATUS_TEMP											
Format		Unsigned binary										
Bit	7	7 6 5 4 3 2 1 0										
Access	R	R R R R R R										
Function												

Bits	Bit Name	Description
7	OTP	Over-temperature protection (OTP) fault indicator. If an over-temperature (OT) fault is sampled on the TEMP pin, this bit is set and latched.
,	OIP	1'b0: No OTP fault has occurred 1'b1: An OTP fault has occurred
6	DIE OTP	Die OTP fault indicator. If the MP2981's die temperature exceeds its OT threshold, this bit is set and latched.
б	BIL_OTI	1'b0: No Die OTP has occurred 1'b1: Die OTP has occurred

5	DRMOS_OCP	DrMOS over-current protection (OCP) fault indicator. If the TEMP pin exceeds 1.8V and a DrMOS OCP fault occurs, this bit is set and latched. When an over-current (OC) condition occurs, DrMOS sets its TEMP pin to VCC.
		1'b0: No DrMOS OCP has occurred 1'b1: DrMOS OCP has occurred
4:0	RESERVED	Reserved. Reads are always 0.

STATUS_CML (7Eh)

The STATUS_CML command records the status between PMBus/I²C and MTP communication. It can be reset by sending a CLEAR_FAULTS command (03h on Page 0, Page 1, or Page 3).

Command				STATU	S_CML									
Format		Unsigned binary												
Bit	7	6 5 4 3 2 1												
Access	R	R	R	R	R	R	R	R						
Function														

Bits	Bit Name	Description						
7	CML INIVALID CMD	CML invalid command fault indicator. If the received PMBus/l²C command is not defined, this bit is set and latched.						
7	CML_INVALID_CMD	1'b0: No CML invalid command fault has occurred 1'b1: A CML invalid command fault has occurred						
6	INTERNAL_DEBUG	Used for debugging.						
5	CML_PEC_FAULT	CML peculiar fault indicator. If the received PMBus/I ² C command does not match the command sent by the master, this bit is set and latched.						
3	CWIL_FEG_FAULT	1'b0: No CML peculiar fault has occurred 1'b1: A CML peculiar fault has occurred						
4	LATCHED_WRFAIL	WRFAIL is a flag signal from the MTP. It signifies that 1 byte written to the M has failed. The MTP_WRFAIL output is reset at the start of writing the next by This bit is the latched result of the MTP_WRFAIL signal. Reset this bit by send a CLEAR_FAULTS command (03h) and the beginning the next MTP write proce (not writing the next byte) after the current MTP storing process finishes.						
		If at least one of the three cyclic redundancy check (CRC) faults occurs, then the corresponding CRC enable bit (07h, bits[15:13]) is set to 1:						
		 The CRC of the first two sections of the MTP (8'h00 to 8'hDD MTP addresses, 8'hDE and 8'hDF store the CRC calculation result). Valid in STORE_ALL (15h), RESTORE_ALL (16h), STORE_USER_ALL (17h), and RESTORE_USER_ALL (18h). Its enable bit is 07h, bit[15]. 						
3	CRC_FAULT_ENABLED	2. The CRC of the third section of MTP (8'hE0 to 8'hFB MTP addresses, 8'hFC, and 8'hFD are the calculated CRC). Valid in STORE_ALL (15h), RESTORE_ALL (16h), STORE_S3 (F5h), and RESTORE_S3 (F6h). Its enable bit is 07h, bit[14].						
		3. The total MTP CRC (8'h00 to 8'hFD MTP addresses, 8'hFE and 8'hFF store the calculated CRC). Valid in STORE_ALL (15h) and RESTORE_ALL (16h). This CRC cannot be enabled or configured by the user due to the commands STORE_USER_ALL (17h) and RESTORE_USER_ALL (18h). If RESTORE_ALL (16h) is sent after STORE_USER_ALL (17h), this CRC error is a false alarm. Its enable bit is 07h, bit[13].						

2	STORE_OK	MTP storing state indicator. If MTP storing has finished without errors, this bit is set. The stored MTP commands are: STORE_ALL (15h), STORE_USER_ALL (17h), STORE_S3 (F5h), and DBG_MTP (F7h).
		1'b0: MTP storing is not complete 1'b1: MTP storing has completed without errors
4	CML OTHER FAILET	Other CML fault indicator. If a false start or stop bit shows up during a normal I^2C command, this bit is set and latched.
'	CML_OTHER_FAULT	1'b0: No other CML fault has occurred 1'b1: A different CML fault has occurred
0	MTP_SIGNATURE_	MTP signature fault indicator. If the first 2 bytes of the MTP are not 16'h1234, this bit is set and latched.
0	FAULT	1'b0: No MTP_SIGNATURE_FAULT has occurred 1'b1: MTP_SIGNATURE_FAULT has occurred

SYS_STATE_DBG (80h)

The SYS_STATE_DBG command records the state machine working in digital format. It is for debugging use.

Command				SYS_ST/	ATE_DBG								
Format		Unsigned binary											
Bit	7	6	5	4	3	2	1	0					
Access	R	R	R	R	R	R R R							
Function	0	CHIP	_PWR_ON_S	TATE	VR_OFF	SY	S_CRTL_STA	TE					

Bits	Bit Name	Description
7	RESERVED	Reserved. Reads are always 0.
6:4	CHIP_PWR_ON_STATE	MTP restoration status after VCC3V3 powers on. 0x03: MTP copying is complete without errors. Normal operation resumes 0x04: There is an MTP signature or cyclic redundancy check (CRC) error 0x06: A protection occurred and was stored into the MTP during the last VCC3V3 on time
3	VR_OFF	CRC or MTP fault indicator. If CRC_FAULT_TOT_EN is high and an MTP_SIGNATURE_FAULT (the first 2 bytes of MTP are not 1234h) or a CRC fault occurs, this bit is set and latched.
2:0	SYS_CRTL_STATE	Indicates the state of the chip. 0x03: Waiting for V _{IN} to exit under-voltage lockout (UVLO) conditions 0x04: Normal operation 0x07: Protection

FINAL_I2C_ADDR (81h)

The FINAL_I2C_ADDR command returns the final 7-bit I²C slave address, regardless of how the pin or register is configured.

Command				FINAL_I2	C_ADDR							
Format				Unsigne	d binary							
Bit	7	6	6 5 4 3 2 1 0									
Access	R	R	R R R R R R									
Function	0			FI	NAL_I2C_ADI	DR .						

Bits	Bit Name	Description
7	RESERVED	Not defined. Read-only.
6:0	FINAL_I2C_ADDR	Final I ² C address of this chip.

REG_LAST_FAULT_MTP (82h)

The REG_LAST_FAULT_MTP command records protections. If PROTECT_FAULT_RECORD_EN (07h), bit[1] is set high when any one of the eleven protections in PROTECT_SIG_GRP (7Ch) occurs (except V_{IN} UVLO), PROTECT_SIG_GRP (including the VIN_UVLO bit) are stored into the MTP addresses (8'hF4 and 8'hF5, FAULT_RECORD bytes).

REG_LAST_FAULT_MTP (82h)

The REG_LAST_FAULT_MTP command records protections. If PROTECT_FAULT_RECORD_EN (07h), bit[1] is set high when any one of the 11 protections in PROTECT_SIG_GRP (7Ch) occurs (except V_{IN} UVLO), then PROTECT_SIG_GRP (including the VIN_UVLO bit) is stored to the MTP addresses (8'hF4 and 8'hF5, FAULT_RECORD bytes).

During the MTP restoration process, including the two FAULT_RECORD bytes (RESTORE_ALL (16h), RESTORE_S3 (F6h) and Page 2 byte read commands), if the first 2 bytes of the MTP are correct (16'h1234), then REG_LAST_FAULT_MTP (82h) is updated.

Command		REG_LAST_FAULT_MTP														
Format		Unsigned binary														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function																

Bits	Bit Name	Description
15:0	REG_LAST_FAULT_MTP	Read result of the recorded PROTECT_SIG_GRP (7Ch) in the MTP. Can be reset by sending a CLR_LAST_FAULT_WMTP command (F1h) on Page 0, Page 1, or Page 3 (not Page 2) when there is no writing or reading to the MTP. It is updated during MTP restoration, which includes the two FAULT_RECORD MTP addresses (8'hf4 and 8'hf5), if the first 2 bytes of the MTP are 16'h1234.

READ_VIN (88h)

The READ_VIN command returns the calculated V_{IN} from the ADC sample result on the MP2981's VINSEN pin.

Command								REA	D_VIN							
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								0						
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function	0	0	0	0	0	0					READ	D_VIN				

Bits	Bit Name	Description
15:10	RESERVED	Not defined. Read-only.
9:0	READ_VIN	0.125V/LSB.

READ VOUT (8Bh)

The READ VOUT command returns the calculated V_{OUT} from the ADC sample result on the VOSEN pin.

Command								READ	_VOUT							
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function	0	0	0	0	0	0	0	READ_VOUT								

MPC1100A-54-0000 - NON-ISOLATED, FIXED RATIO, 300W, DIGITAL DC/DC MODULE

NOT RECOMMENDED FOR NEW DESIGNS, REFER TO MPC1100C-54-0002

Bits	Bit Name	Description
15:9	RESERVED	Not defined. Read-only.
8:0	READ_VOUT	62.5mV/LSB.

READ_IOUT (8Ch)

The READ_IOUT command returns the calculated I_{OUT} from the ADC sample result on the IMON pin.

Command								READ	_IOUT							
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function	0	0	0	0	0	0		READ_IOUT								

Bits	Bit Name	Description
15:10	RESERVED	Not defined. Read-only.
9:0	READ_IOUT	0.25A/LSB.

READ_TEMP (8Dh)

The READ_TEMP command returns the calculated DrMOS temperature from the ADC sample result on the TEMP pin.

Command				READ	_TEMP									
Format		Unsigned binary												
Bit	7	7 6 5 4 3 2 1 0												
Access	R	R	R	R	R	R	R	R						
Function														

	Bits	Bit Name	Description
ſ	7:0	READ_TEMP	1°C/LSB.

READ_DIE_TEMP (8Eh)

The READ_DIE_TEMP command returns the calculated MP2981 die temperature from the ADC sample result of the chip's die temperature sense.

Command				READ_D	IE_TEMP									
Format		Unsigned binary												
Bit	7	7 6 5 4 3 2 1 0												
Access	R	R	R	R	R	R	R	R						
Function														

Bits	Bit Name	Description
7:0	READ_DIE_TEMP	1°C/LSB.

60 MPC1100A-54-0000 Rev. 1.0 MonolithicPower.com

USER_KEY_INPUT (90h)

The USER_KEY_INPUT command sets the PMBus/I²C password. After 90h is written with the value of MFR_USER_PWD (44h) and start-up restoration completed, writing Page 0 registers is allowed. MFR_USER_PWD can be all zeros. This command is write-only. It is not stored in the MTP. After MTP start-up restoration, send the PMBus command to switch to Page 0, and then set register 90h to be equal to MFR_USER_PWD.

Command		USER_KEY_INPUT														
Format		Unsigned binary														
Bit	15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Function																

Bits	Bit Name	Description
15:0	USER_KEY_INPUT	Password for PMBus/I ² C communication on Page 0. Set by the user. Write-only.

READ_POUT (96h)

The READ_POUT command returns the monitored output power (P_{OUT}) calculated from READ_VOUT and READ_IOUT. The PSYS pin value comes from this register. If PSYS_SEL_2W (06h), bit[13] is high, then READ_POUT, bits[10:1] are sent to the internal PSYS DAC. If PSYS_SEL_2W (06h), bit[13] is low, then READ_POUT, bits[9:0] (READ_POUT, bit[10] = 1 means 10'h3ff) are sent to the DAC. The DAC is 10 bits with a 1.28V range. The DAC output voltage is converted to a current flowing out of PSYS with a 1μ A/10mV resolution. Calculate the PSYS current with Equation (20):

$$PSYS_CURRENT = \frac{1}{0.01V} \times \frac{1.28V}{DAC_IN_10BIT} (\mu A)$$
 (20)

Where DAC IN 10BIT is the 10-bit data inputted into the PSYS DAC.

Command								READ	POUT							
Format		Unsigned binary														
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function	0	0	0	0	0		READ_POUT									

Bits	Bit Name	Description
15:11	RESERVED	Not defined. Read-only.
10:0	READ_POUT	1W/LSB.

VIN SENSE (99h)

The VIN_SENSE command returns the MP2981's VINSEN pin's 10-bit ADC sample result. Used for debugging.

Command	VIN_SENSE															
Format							ι	Jnsigne	d binar	у						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function	0	0	0	0	0	0 VIN_SENSE										

Bits	Bit Name	Description
15:10	RESERVED	Not defined. Read-only.
9:0	VIN_SENSE	VINSEN (V) x 1024 / 1.6 (V).

VOUT SENSE (9Ah)

The VOUT_SENSE command returns the VOSEN pin's 10-bit ADC sample result. Used for debugging.

Command	VOUT_SENSE															
Format							ι	Jnsigne	d binar	у						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function	0	0	0	0	0	0 0 VOUT_SENSE										

Bits	Bit Name	Description
15:10	RESERVED	Not defined. Read-only.
9:0	VOUT_SENSE	VOSEN (V) x 1024 / 1.6 (V).

IOUT_SENSE (9Bh)

The IOUT_SENSE command returns the IMON pin's 10-bit ADC sample result. Used for debugging.

Command		IOUT_SENSE														
Format	Unsigned binary															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function	0	0	0	0	0	0	0 IOUT_SENSE									

Bits	Bit Name	Description
15:10	RESERVED	Not defined. Read-only.
9:0	IOUT_SENSE	VIMON (V) x 1024 / 1.6 (V).

TEMP_SENSE (9Ch)

The TEMP_SENSE command returns the TEMP pin's 10-bit ADC sample result. Used for debugging.

Command TEMP_SENSE																
Format							ι	Jnsigne	d binar	y						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function	0	0	0	0	0	0 TEMP_SENSE										

Bits	Bit Name	Description
15:10	RESERVED	Not defined. Read-only.
9:0	TEMP_SENSE	TEMP (V) x 1024 / 1.6 (V).

DIE_TEMP_SENSE (9Dh)

The DIE_TEMP_SENSE command returns the 10-bit ADC sample result of the chip's sensed die temperature. Used for debugging.

Command DIE_TEMP_SENSE																
Format							ι	Jnsigne	d binar	у						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function	0	0	0	0	0	0	0 DIE_TEMP_SENSE									

Bits	Bit Name	Description
15:10	RESERVED	Not defined. Read-only.

MPC1100A-54-0000 - NON-ISOLATED, FIXED RATIO, 300W, DIGITAL DC/DC MODULE

NOT RECOMMENDED FOR NEW DESIGNS, REFER TO MPC1100C-54-0002

		The ADC result of the temperature from the internal temperature sensor, typically by design. DIE_TEMP_SENSE can be calculated with the following equation:
9:0	DIE_TEMP_SENSE	DIE_TEMP_SENSE = INTERNAL_VOLTAGE x 1024 / 1.6
		In default mode, the internal temp voltage (mV) = 9.83T (°C) - 109.8. In VBE mode, voltage (mV) = -1.99T (°C) + 724.0.

TON_PWMP (9Eh)

The TON PWMP command monitors the output PWMP ton. Used for debugging.

Command		TON_PWMP														
Format		Unsigned binary														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function	0	0	0	0	0	0	TON_PWMP									

Bits	Bit Name	Description
15:10	RESERVED	Not defined. Read-only.
9:0	TON_PWMP	ton for output PWMPs. 5ns/LSB.

TON_SR_PWM (9Fh)

This register monitors the output SR_PWMs ton. Used for debugging.

Command		TON_SR_PWM														
Format		Unsigned binary														
Bit	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (0									
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Function	0	0	0	0	0	0	TON_SR_PWM									

[Bits	Bit Name	Description
Ī	15:10	RESERVED	Not defined. Read-only.
Ī	9:0	TON_SR_PWM	toN for output SR_PWMs. 5ns/LSB.

CLR_LAST_FAULT_WMTP (F1h)

The CLR_LAST_FAULT_WMTP command writes the 2 FAULT_RECORD bytes of the MTP to 0000h, and clears the REG_LAST_FAULT_MTP (82h on Page 0) register. It can be sent by Page 0, Page 1, or Page 3 (not Page 2).

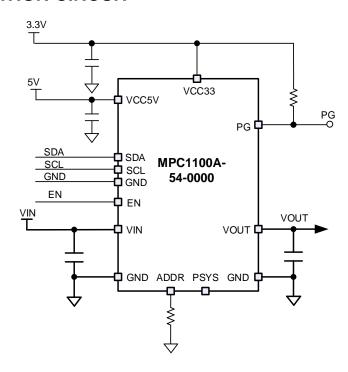
This command is only valid when the MTP is not locked, which means that this command is not a write protection. When FAULT_SINGLE_EN (07h), bit[3] = 0, sending F1h writes all 32 bytes of the third section of the MTP (8'hE0 to 8'hFF MTP addresses), but the 2 FAULT_RECORD bytes are written to 0000h. When FAULT_SINGLE_EN = 1, sending F1h only writes the 2 bytes of the MTP, and not all 32 bytes.

READ_LAST_FAULT_TRIG (F2h)

Do not send this command.

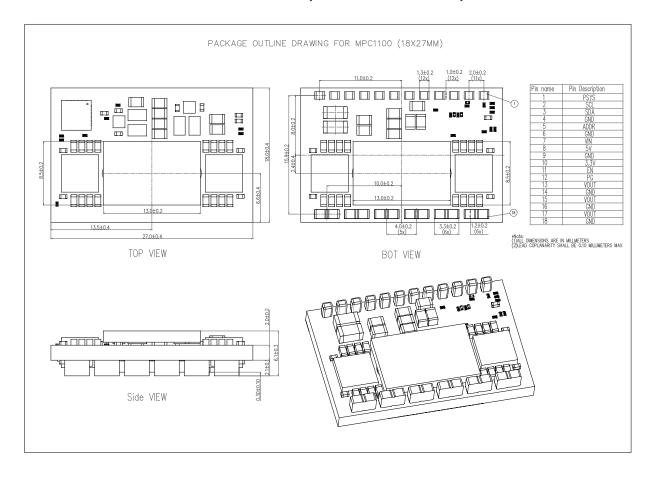
CLEAR_STORE_FAULTS (F3h)

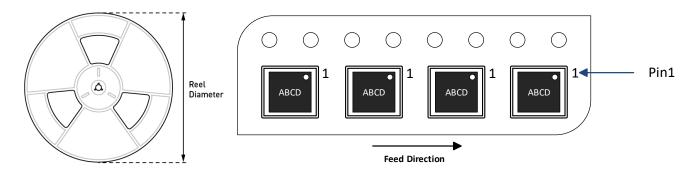
The CLEAR_STORE_FAULTS command clears faults. If start-up is paused by MTP_LAST_FAULT (the data of the 2 FAULT_RECORD bytes in the MTP are not all zeros, or are not found during the start-up restoration), sending F3h forces the device to continue start-up. The REG_LAST_FAULT_MTP register (82h) and the 2 bytes in the MTP are not reset by this command. It can be sent by Page 0, Page 1, or Page 3 (not Page 2).


CLEAR_MTP_FAULTS (F4h)

The CLEAR_MTP_FAULTS command clears MTP faults. If start-up is paused due to an MTP_SIGNATURE fault (the first 2 bytes of the MTP are not 1234h) or a CRC fault, sending the F4h command forces the device into the next state (checking REG_LAST_FAULT_MTP (82h)), and start-up continues.

This command clears all cyclic redundancy check (CRC) errors, clears MTP_SIGN_FAULT, and resets the DBG_MTP_OK signal (the result to automatically read the MTP after the DBG_MTP command (F7h) is correct) to 1. It can be sent by Page 0, Page 1, or Page 3 (not Page 2).


TYPICAL APPLICATION CIRCUIT


PACKAGE INFORMATION

Surface-Mount (18mmx27mmx6mm)

CARRIER INFORMATION

Part Number	Package Description	Quantity/ Reel	Quantity/ Tube	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch	
MPC1100A-54-0000-Z	Surface-mount (18mmx27mmx6mm)	300	N/A	13in	44mm	24mm	

© 2022 MPS. All Rights Reserved.

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	3/5/2021	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.