

Small signal Schottky diodes

Datasheet - production data

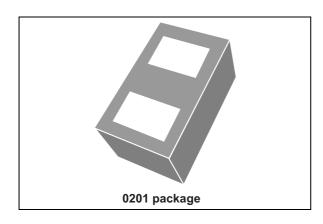


Figure 1. Pin configuration and marking

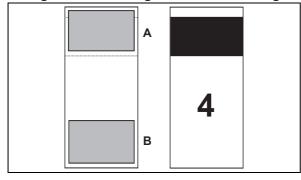
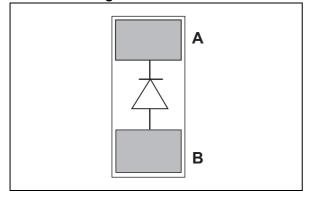



Figure 2. Schematic

Features

- Very low conduction losses
- Negligible switching losses
- 0201 package
- · Low capacitance diode

Description

The BAT30 series uses 30 V Schottky barrier diodes in 0201 Flip Chip. This device is intended to be used in smartphones, and is especially suited for rail to rail protection where its low forward voltage drop will help designers to get an efficient protection of their ICs.

Table 1. Device summary

Symbol	Value
V_{RRM}	30 V
T _j (max)	85 °C

Characteristics BAT30F4

1 Characteristics

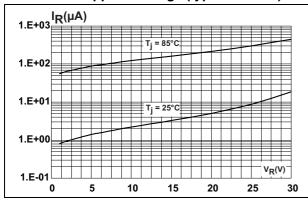
Table 2. Absolute ratings (limiting values at T_i = 25 °C, unless otherwise specified)

Symbol	Parameter	Value	Unit
V_{RRM}	Repetitive peak reverse voltage	30	V
I _{FSM}	Surge non repetitive forward current	4	Α
T _{stg}	Storage temperature range	-55 to +150	°C
T _{op}	Operating junction temperature range	-30 to +85	°C
Tj	Maximum operating junction temperature	150	°C
T _L	Maximum soldering temperature during 1	260	°C

^{1.} $\frac{dPtot}{dT_j} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 3. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
	_	T _j = 25 °C	V _R = 10 V	-	2.2		μΑ
I _R ⁽¹⁾	Reverse leakage	T _j = 85 °C	v _R = 10 v	-		300	
'R`	current	T _j = 25 °C	V _R = 30 V	-		50	
		T _j = 85 °C		-		1600	
		T _j = 25 °C	I _F = 5 mA	-		0.285	V
V _F ⁽²⁾	Forward voltage drop	T _j = 85 °C		-		0.205	
		T _j = 25 °C	I _F = 10 mA	-	0.27	0.31	
		T _j = 85 °C		-		0.24	


^{1.} Pulse test: $t_p = 5 \text{ ms}$, $\delta < 2 \%$

^{2.} Pulse test: t_p = 380 μ s, δ < 2 %

BAT30F4 Characteristics

Figure 3. Reverse leakage current versus reverse applied voltage (typical values)

Figure 4. forward voltage drop versus forward current (typical values)

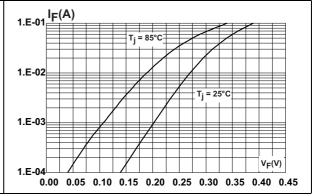
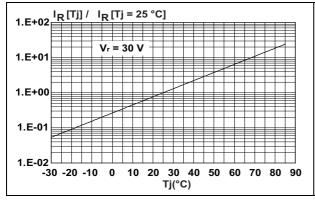
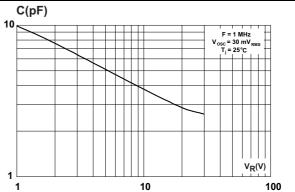




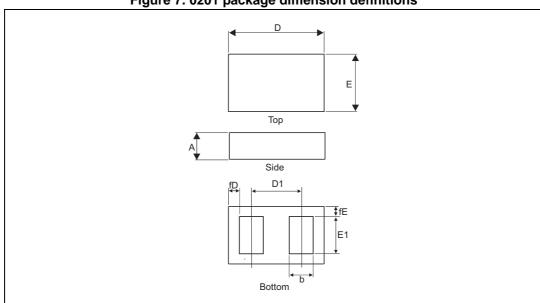
Figure 5. Relative variation of reverse leakage current versus junction temperature

Figure 6. Junction capacitance versus reverse applied voltage (typical values)

Package information BAT30F4

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.



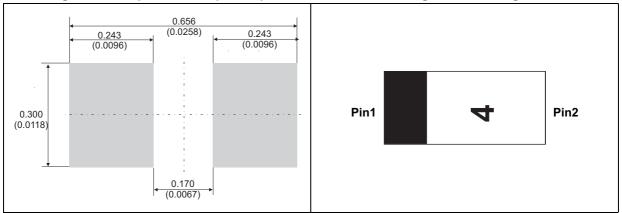

Figure 7. 0201 package dimension definitions

Table 4. 0201 package dimension values

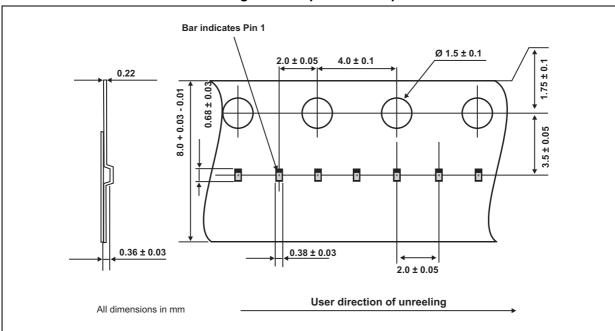
	Dimensions					
Ref.	Millimeters		Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	0.28	0.3	0.32	0.0110	0.0118	0.0126
b	0.125	0.14	0.155	0.0049	0.0055	0.0061
D	0.57	0.6	0.63	0.0224	0.0236	0.0248
D1		0.35			0.0138	
Е	0.27	0.3	0.33	0.0106	0.0118	0.0130
E1	0.175	0.19	0.205	0.0069	0.0075	0.0081
fD	0.065	0.08	0.095	0.0026	0.0031	0.0037
fE	0.11	0.125	0.13	0.0043	0.0049	0.0051

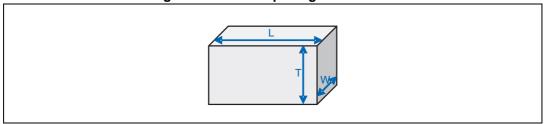
Figure 8. Footprint in mm (inches)

Figure 9. Marking

Note:

The marking codes can be rotated by 90° or 180° to differentiate assembly location. In no case should this product marking be used to orient the component for its placement on a PCB. Only pin 1 mark is to be used for this purpose.




Figure 10. Tape and reel specification

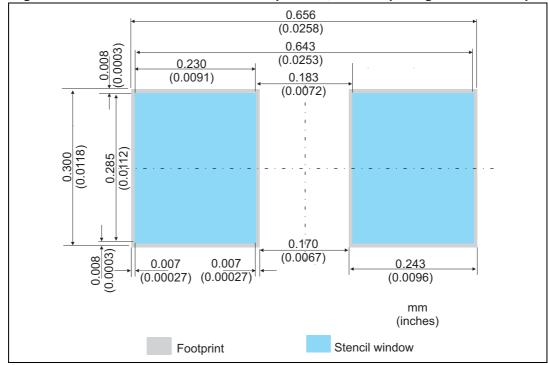
3 Recommendation on PCB assembly

3.1 Stencil opening design

- 1. General recommendations on stencil opening design
 - a) Stencil opening dimensions: L (Length), W (Width), T (Thickness).

Figure 11. Stencil opening dimensions

b) General design rule


Stencil thickness (T) = 75 \sim 125 μm

Aspect Ratio =
$$\frac{W}{T} \ge 1.5$$

Aspect Area =
$$\frac{L \times W}{2T(L + W)} \ge 0.66$$

- 2. Recommended stencil window
 - a) Stencil opening thickness: 80 μm
 - b) Other dimensions: see Figure 12

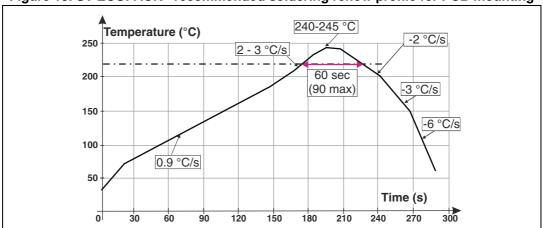
Figure 12. Recommended stencil window position, stencil opening thickness: 80 µm

3.2 Solder paste

- 1. Use halide-free flux, qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste recommended.
- 3. Offers a high tack force to resist component displacement during PCB movement.
- 4. Use solder paste with fine particles: Type 4 (powder particle size 20-48 μ m per IPC J STD-005).

3.3 Placement

- 1. Manual positioning is not recommended.
- 2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering.
- 3. Standard tolerance of \pm 0.05 mm is recommended.
- 4. 1.0 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- 5. To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
- For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.


3.4 PCB design preference

- To control the solder paste amount, the closed via is recommended instead of open vias.
- The position of tracks and open vias in the solder area should be well balanced. The symmetrical layout is recommended, in case any tilt phenomena caused by asymmetrical solder paste amount due to the solder flow away.

3.5 Reflow profile

Figure 13. ST ECOPACK® recommended soldering reflow profile for PCB mounting

Note: Minimize air convection currents in the reflow oven to avoid component movement.

4 Ordering information

Table 5. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
BAT30F4	4 ⁽¹⁾	0201 CSP	0.116 mg	15000	Tape and reel

^{1.} The marking codes can be rotated by 90° or 180° to differentiate assembly location

5 Revision history

Table 6. Document revision history

Date	Revision	Changes
13-May-2014	1	First issue

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID025780 Rev 1 10/10

