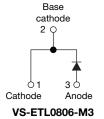


www.vishay.com

Vishay Semiconductors

RoHS

HALOGEN


FREE

Ultrafast Rectifier, 8 A FRED Pt®

2L TO-220 FULL-PAK

VS-ETL0806FP-M3

PRODUCT SUMMARY					
Package	2L TO-220AC, 2L TO-220FP				
I _{F(AV)}	8 A				
V_{R}	600 V				
V _F at I _F	0.84 V				
t _{rr} (typ.)	65 ns				
T _J max.	175 °C				
Diode variation	Single die				

FEATURES

- State of the art low forward voltage drop
- · Ultrafast recovery time
- 175 °C operating junction temperature
- Low leakage current
- Fully isolated package (V_{INS} = 2500 V_{RMS})
- True 2 pin package
- Designed and qualified according to JEDEC®-JESD 47
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

State of the art, ultralow V_F , soft-switching ultrafast rectifiers optimized for Discontinuous (Critical) Mode (DCM) Power Factor Correction (PFC).

The minimized conduction loss, optimized stored charge and low recovery current minimized the switching losses and reduce over dissipation in the switching element and snubbers.

The device is also intended for use as a freewheeling diode in power supplies and other power switching applications.

APPLICATIONS

AC-DC SMPS 70 W to 400 W

e.g. laptop and printer AC adaptors, desktop PC, TV and monitor, games units and DVD AC/DC power supplies.

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Peak repetitive reverse voltage	V_{RRM}		600	V			
Average rectified forward current in DC	I _{F(AV)}	T _C = 155 °C	8	А			
FULL-PAK		T _C = 134 °C	0				
Non-repetitive peak surge current	I _{FSM}	T _J = 25 °C	120				
Operating junction and storage temperatures	T _J , T _{Stg}		-65 to +175	°C			

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS MIN. TYP. MAX.				UNITS	
Breakdown voltage, blocking voltage	V _{BR} , V _R	Ι _R = 100 μΑ	600	-	-		
Forward voltage	V _F	I _F = 8 A	-	0.97	1.07	V	
		I _F = 8 A, T _J = 150 °C	-	0.84	0.90	1	
Devenue leekage cumment	_	$V_R = V_R$ rated	-	0.01	9		
Reverse leakage current I _R		T _J = 150 °C, V _R = V _R rated	-	5	50	μΑ	
Junction capacitance	C _T	V _R = 600 V	-	6	=	pF	
Series inductance	L _S	Measured lead to lead 5 mm from package body - 8 - nh				nH	

VS-ETL0806-M3, VS-ETL0806FP-M3

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CO	MIN.	TYP.	MAX.	UNITS	
		$I_F = 1 A, dI_F/dt = 100$	V = 30 V	-	65	100	
Poverse recovery time		$I_F = 8 \text{ A}, dI_F/dt = 100$	$I_F = 8 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$		150	250	
Reverse recovery time	t _{rr}	T _J = 25 °C		-	180	-	ns
		T _J = 125 °C		-	240	-	
Dook receivery ourrent		T _J = 25 °C	I _F = 8 A dI _F /dt = 200 A/μs V _B = 390 V	-	15	-	Α
Peak recovery current	I _{RRM}	T _J = 125 °C		-	19	-	
Reverse recovery charge		T _J = 25 °C		-	1500	=	nC
	Q _{rr}	T _J = 125 °C		-	2400	-	

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Maximum junction and storage temperature range	T _J , T _{Stg}		-65	-	175	°C	
Thermal resistance,	В		-	2.0	2.6		
junction to case FULL-PAK	R _{thJC}		-	4.6	5.5		
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	-	70	°C/W	
Typical thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-		
Maiala			-	2	-	g	
Weight			-	0.07	-	oz.	
Mounting torque			6 (5)	-	12 (10)	kgf · cm (lbf · in)	
Marking daying		Case style 2L TO-220AC	ETL0806				
Marking device		Case style 2L TO-220 FULL-PAK		ETL08	306FP		

www.vishay.com

Vishay Semiconductors

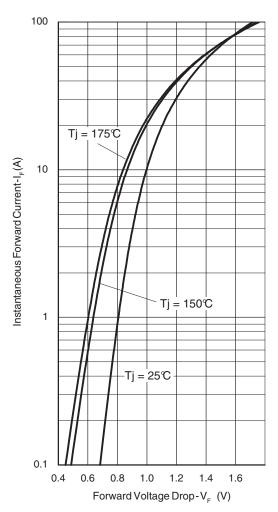


Fig. 1 - Typical Forward Voltage Drop Characteristics

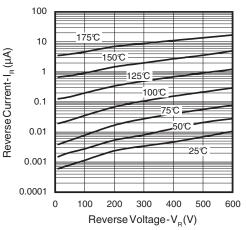


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

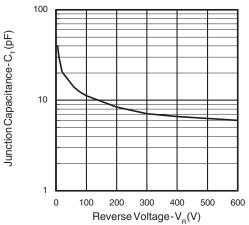


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

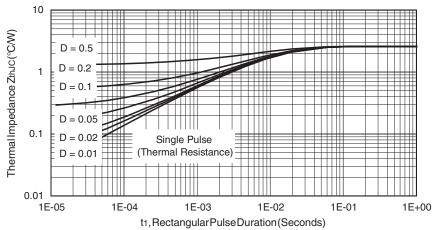


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

www.vishay.com Vishay Semiconductors

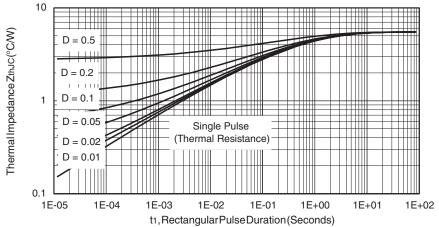


Fig. 5 - Maximum Thermal Impedance Z_{thJC} Characteristics (FULL-PAK)

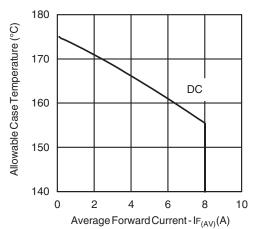


Fig. 6 - Maximum Allowable Case Temperature vs.
Average Forward Current

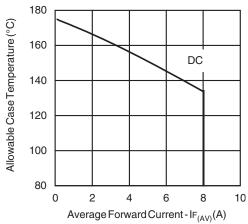


Fig. 7 - Maximum Allowable Case Temperature vs. Average Forward Current (FULL-PAK)

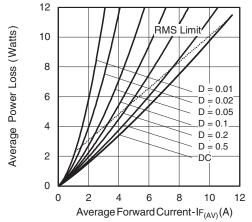


Fig. 8 - Forward Power Loss Characteristics

www.vishay.com

Vishay Semiconductors

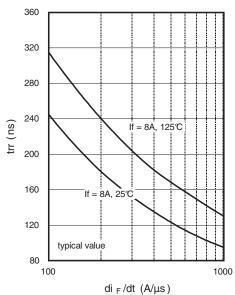


Fig. 9 - Typical Reverse Recovery vs. dl_F/dt

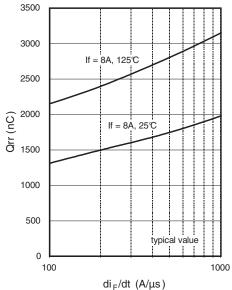


Fig. 10 - Typical Stored Charge vs. dl_F/dt

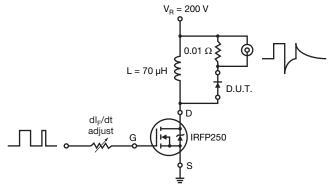
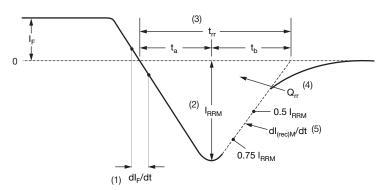
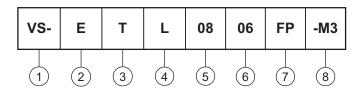



Fig. 11 - Reverse Recovery Parameter Test Circuit

- (1) dl_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) t_{rr} reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current.
- (4) \mathbf{Q}_{rr} area under curve defined by \mathbf{t}_{rr} and \mathbf{I}_{RRM}

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(5) dI_{(rec)M}/dt - peak rate of change of current during t_b portion of t_{rr}


Fig. 12 - Reverse Recovery Waveform and Definitions

VS-ETL0806-M3, VS-ETL0806FP-M3

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Circuit configuration:

E = single diode

3 - T = TO-220

L = hyperfast recovery time

5 - Current code: 08 = 8 A

6 - Voltage code: 06 = 600 V

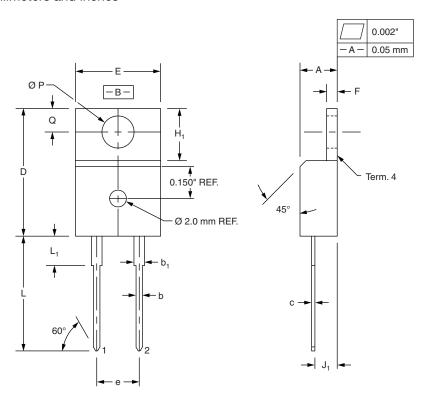
7 - • None = TO-220

• FP = FULL-PAK

8 - Environmental digit:

-M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free

ORDERING INFORMATION (Example)						
PREFERRED P/N	QUANTITY PER TUBE	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-ETL0806-M3	50	1000	Antistatic plastic tube			
VS-ETL0806FP-M3	50	1000	Antistatic plastic tube			


LINKS TO RELATED DOCUMENTS					
Dimensions	2L TO-220AC	www.vishay.com/doc?95259			
Dimensions	2L TO-220 FULL-PAK	www.vishay.com/doc?95260			
Part marking information	2L TO-220AC	www.vishay.com/doc?95391			
Part marking information	2L TO-220 FULL-PAK	www.vishay.com/doc?95392			

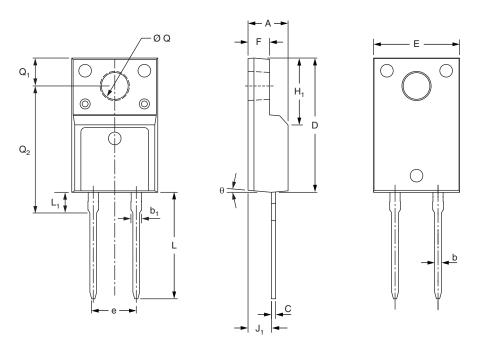
Vishay Semiconductors

True 2 Pin TO-220

DIMENSIONS in millimeters and inches

SYMBOL	MILLIM	METERS	INC	HES
STMBOL	MIN.	MAX.	MIN.	MAX.
А	4.32	4.57	0.170	0.180
b	0.71	0.91	0.028	0.036
b ₁	1.15	1.39	0.045	0.055
С	0.36	0.53	0.014	0.021
D	14.99	15.49	0.590	0.610
Е	10.04	10.41	0.395	0.410
е	5.08	BSC	0.200 BSC	
F	1.22	1.37	0.048	0.054
H ₁	5.97	6.47	0.235	0.255
J ₁	2.54	2.79	0.100	0.110
L	13.47	13.97	0.530	0.550
L ₁ ⁽¹⁾	3.31	3.81	0.130	0.150
Ø P	3.79	3.88	0.149	0.153
Q	2.60	2.84	0.102	0.112

Notes


- $^{(1)}$ Lead dimension and finish uncontrolled in L_1
- These dimensions are within allowable dimensions of JEDEC TO-220AB rev. J outline dated 3-24-87
- Controling dimension: Inch

Vishay Semiconductors

True 2 Pin TO-220 FULL-PAK

DIMENSIONS in millimeters and inches

SYMBOL	MILLI	METERS	INC	HES
STMBOL	MIN.	MAX.	MIN.	MAX.
A	4.53	4.93	0.178	0.194
b	0.71	0.91	0.028	0.036
b ₁	1.15	1.39	0.045	0.055
С	0.36	0.53	0.014	0.021
D	15.67	16.07	0.617	0.633
E	9.96	10.36	0.392	0.408
е	5.08	typical	0.200 typical	
F	2.34	2.74	0.092	0.107
H ₁	6.50	6.90	0.256	0.272
J ₁	2.56	2.96	0.101	0.117
L	12.78	13.18	0.503	0.519
L ₁	2.23	2.63	0.088	0.104
ØQ	2.98	3.38	0.117	0.133
Q ₁	3.10	3.50	0.122	0.138
Q_2	14.80	15.20	0.583	0.598
θ	0°	5°	0°	5°

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000